This Article Statistics
Viewed : 2887 Downloaded : 2193


Isolation of cellulose and hemicellulose by using alkaline peroxide treatment at room temperature from wasted fall leaves

Erdem Tezcan *, Oya Galioğlu Atıcı

DOI: 10.28978/nesciences.330602


Fall leaves are biodegraded and composted naturally in forests but they are wastes for urban areas. Moreover, they are widely available cellulose sources but have limited applications. Alkaline peroxide treatment of bioresources is one of the most widely studied clean methods for both delignification and hemicellulose removal but there is no study about application of that method on fall leaves at room temperature. In this study, the effect of alkaline peroxide treatment of fall leaves at room temperature on hemicellulose recovery and cellulose delignification were investigated. Fall leaves (FL) were treated with 0.3 3.0 M NaOH + 0 3 M H2O2 at room temperature. Hemicellulose recovery and cellulose delignification values were analyzed. Hemicellulose recovery and cellulose delignification increased and yield decreased by increasing NaOH and H2O2 concentrations. Hemicellulose recovery and cellulose delignification reached the maximum levels, 99.5% and 81.6% respectively, at 3M NaOH + 3M H2O2 treatment condition. The end products were confirmed by analytically, spectrally and morphologically. Wasted fall leaves were turned into useful hemicellulose and cellulose products by using clean alkaline peroxide treatment at room temperature. The products can be further processed by known methods into other industrial products.


Waste management, fall leaves, alkaline peroxide treatment, clean process at room temperature, hemicellulose recovery, delignification

Download full text   |   How to Cite   |   Download XML Files

  • Fang, J., Sun, R. & Tomkinson, J. (2000). Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose, 7(1):87–107. doi:10.1023/A:1009245100275.
  • Gould, J. M. (1985). Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnology and Bioengineering, 27(3):225–231. doi:10.1002/bit.260270303.
  • Huang, C., Han, L., Liu, X. & Ma, L. (2010). The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(2):114–120. doi:10.1080/15567030902937127.
  • Isobe, N., Chen, X., Kim, U.-J., Kimura, S., Wada, M., Saito, T. & Isogai, A. (2013). TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. Journal of Hazardous Materials, 260:195–201. doi:10.1016/j.jhazmat.2013.05.024.
  • Kim, J. S., Lee, Y. & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199:42–48. doi:10.1016/j.biortech.2015.08.0850960-8524.
  • Klemm, D., Heublein, B., Fink, H.-P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie (International Ed. in English), 44(22):3358–93. doi:10.1002/anie.200460587.
  • Liu, C., Xu, F., Sun, J., Ren, J., Curling, S., Sun, R., … Baird, M. (2006). Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Research, 341(16):2677–2687. doi:10.1016/j.carres.2006.07.008.
  • Liu, R., Yu, H. & Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12(1):25–34. doi:10.1007/s10570-004-0955-8.
  • Lu, P. & Hsieh, Y.-L. (2010). Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2):329–336. doi:10.1016/j.carbpol.2010.04.073.
  • Rabelo, S. C., Andrade, R. R., Maciel Filho, R. & Costa, A. C. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel, 136:349–357. doi:10.1016/j.fuel.2014.07.033.
  • Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., … others. (2015). Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource Technology, 183:248–254. doi:10.1016/j.biortech.2015.02.031
  • Su, Y., Du, R., Guo, H., Cao, M., Wu, Q., Su, R., … He, Z. (2015). Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components. Food and Bioproducts Processing, 94:322–330. doi:10.1016/j.fbp.2014.04.001.
  • Sun, J., Sun, X., Zhao, H. & Sun, R. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2):331–339. doi:10.1016/j.polymdegradstab.2004.02.008.
  • Sun, R., Fang, J. M., Mott, L. & Bolton, J. (1999). Extraction and characterization of hemicelluloses and cellulose from oil palm trunk and empty fruit bunch fibres. Journal of Wood Chemistry and Technology, 19(1-2):167–185. doi:10.1080/02773819909349606
  • Sun, R., Tomkinson, J., Ma, P. & Liang, S. (2000). Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydrate Polymers, 42(2):111–122. doi:10.1016/S0144-8617(99)00136-8.
  • Talebnia, F., Karakashev, D. & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13):4744–4753. doi:10.1016/j.biortech.2009.11.080.
  • TAPPI Standard T236 cm-85. (1993). Kappa number of pulp. TAPPI Test Methods.
  • Ünlü, C. H., Günister, E. & Atıcı, O. (2009). Synthesis and characterization of NaMt biocomposites with corn cob xylan in aqueous media. Carbohydrate Polymers, 76(4):585–592. doi:10.1016/j.carbpol.2008.11.029.