This Article Statistics
Viewed : 33 Downloaded : 21 Cited : 0


Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications

Ammar A. Oglat *, MZ Matjafri, Nursakinah Suardi , Mohammad A. Oqlat, Ahmad A. Oqlat, Mostafa A Abdelrahman, O.F.Farhat, Muntaser S. Ahmad, Batool N. Alkhateb, Sylvester J. Gemanam, Sabri M.Shalbi, Raed Abdalrheem, Marwan Shipli, Mohammad Marashdeh


A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through the vessels. Presently, few flow phantoms are being used to be qualified for long-term utilize and storage with high physiological flow rate Doppler ultrasound. The main drawback of the two hydrogel materials items (Konjac (K) and carrageenan (C) (KC)) that it is not fit for long-term storage and easy to deteriorate. Thus, this research study focuses on the characterization and construction of a robust and elastic wall-less flow phantom with suitable acoustical properties of TMM. The mechanisms for the fabrication of a wall-less flow phantom utilizing a physically strong material such as K, C, and gelatin (bovine skin)-based TMM were explained. In addition, the clinical ultrasound (Hitachi Avius (HI)) system was used as the main instrument for data acquisition. Vessel mimicking material (VMM) with dimensions of 15.0 mm depth equal to those of human common carotid arteries (CCA) were obtained with pulsatile flow. The acoustical properties (speed of sound and attenuation were 1533±2 m/s and 0.2 dB/cm. MHz, respectively) of a new TMM were agreed with the IEC 61685 standards. Furthermore, the velocity percentages error were decreased with increase in the Doppler angle (the lowest % error (3%) it was at 53◦). The gelatin from bovine skin was a proper material to be added to KC to enhance the strength of TMM during for long-term utilize and storage of high-flow of blood mimicking Fluid (BMF). This wall-less flow phantom will be a suitable instrument for examining in-vitro research studies.


BMF, TMM, Wall-less Flow Phantom, Acoustical Properties, Clinical Doppler Ultrasound (HI).


Volume 3, No 3, 359-377 , 2018

Download full text   |   How to Cite   |   Download XML Files

  • Bishop, C., Powell, S., & Rutt, D. (1986). Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke, 17(5), 913-915.
  • Blake, J. R., Meagher, S., Fraser, K. H., Easson, W. J., & Hoskins, P. R. (2008). A method to estimate wall shear rate with a clinical ultrasound scanner. Ultrasound in medicine & biology, 34(5), 760-774.
  • Brands, P. J., Hoeks, A. P., Hofstra, L., & Reneman, R. S. (1995). A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound in medicine & biology, 21(2), 171-185.
  • Browne, J. E. (2014). A review of Doppler ultrasound quality assurance protocols and test devices. Physica Medica, 30(7), 742-751.
  • Chen, J.-H., Pu, Y.-S., Liu, S.-P., & Chiu, T.-Y. (1993). Renal hemodynamics in patients with obstructive uropathy evaluated by duplex Doppler sonography. The Journal of urology, 150(1), 18-21.
  • Commission, I. E. (2001). Ultrasonics—Flow measurement systems: Flow test object. Draft IEC, 1685.
  • Doucette, J. W., Corl, P. D., Payne, H. M., Flynn, A. E., Goto, M., Nassi, M., & Segal, J. (1992). Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation, 85(5), 1899-1911.
  • Evans, D. H. (2000). Doppler signal analysis. Ultrasound in medicine & biology, 26, S13-S15.
  • Gerhard-Herman, M., Gardin, J. M., Jaff, M., Mohler, E., Roman, M., & Naqvi, T. Z. (2006). Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vascular Medicine, 11(3), 183-200.
  • Grant, E. G., Benson, C. B., Moneta, G. L., Alexandrov, A. V., Baker, J. D., Bluth, E. I., . . . Hertzberg, B. S. (2003). Carotid artery stenosis: gray-scale and Doppler US diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology, 229(2), 340-346.
  • Hoskins, P. (1999). A comparison of single-and dual-beam methods for maximum velocity estimation. Ultrasound in medicine & biology, 25(4), 583-592.
  • Hoskins, P. (2002). Ultrasound techniques for measurement of blood flow and tissue motion. Biorheology, 39(3, 4), 451-459.
  • Hoskins, P. R. (2008). Simulation and validation of arterial ultrasound imaging and blood flow. Ultrasound in Medicine and Biology, 34(5), 693-717.
  • Hoskins, P. R., Soldan, M., Fortune, S., Inglis, S., Anderson, T., & Plevris, J. (2010). Validation of endoscopic ultrasound measured flow rate in the azygos vein using a flow phantom. Ultrasound in medicine & biology, 36(11), 1957-1964.
  • Kenwright, D. A., Laverick, N., Anderson, T., Moran, C. M., & Hoskins, P. R. (2015). Wall-less flow phantom for high-frequency ultrasound applications. Ultrasound in medicine & biology, 41(3), 890-897.
  • Kenwright, D. A., Sadhoo, N., Rajagopal, S., Anderson, T., Moran, C. M., Hadoke, P. W., . . . Hoskins, P. R. (2014). Acoustic assessment of a konjac–carrageenan tissue-mimicking material at 5–60 MHz. Ultrasound in Medicine & Biology, 40(12), 2895-2902.
  • Kornet, L., Lambregts, J., Hoeks, A. P., & Reneman, R. S. (1998). Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arteriosclerosis, thrombosis, and vascular biology, 18(12), 1877-1884.
  • Law, Y., Johnston, K., Routh, H., & Cobbold, R. (1989). On the design and evaluation of a steady flow model for Doppler ultrasound studies. Ultrasound in medicine & biology, 15(5), 505-516.
  • McNaughton, D. A., & Abu-Yousef, M. M. (2011). Doppler US of the Liver Made Simple 1. Radiographics, 31(1), 161-188.
  • Meagher, S., Poepping, T., Ramnarine, K., Black, R., & Hoskins, P. (2007). Anatomical flow phantoms of the nonplanar carotid bifurcation, part II: experimental validation with Doppler ultrasound. Ultrasound in Medicine & Biology, 33(2), 303-310.
  • Mehra, S. (2010). Role of Duplex Doppler sonography in arterial stenoses. Journal Indian Academy of Clinical Medicine, 11(4), 294-299.
  • Michie, D., & Fried, W. (1973). An in vitro test medium for evaluating clinical Doppler ultrasonic flow systems. Journal of clinical ultrasound: JCU, 1(2), 130.
  • Oglat, A. A., Matjafri, M., Suardi, N., Abdelrahman, M. A., Oqlat, M. A., & Oqlat, A. A. (2018). Anew scatter particle and mixture fluid for preparing blood mimicking fluid for wall‑less flow phantom. J Med Ultrasound.
  • Oglat, A. A., Matjafri, M., Suardi, N., Oqlat, M. A., Abdelrahman, M. A., & Oqlat, A. A. (2018). A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. Journal of Medical Ultrasound, 26(1), 3.
  • Oglat, A. A., Matjafri, M., Suardi, N., Oqlat, M. A., Oqlat, A. A., & Abdelrahman, M. A. A New Blood Mimicking Fluid Using Propylene Glycol and Their Properties for a Flow Phantom Test of Medical Doppler Ultrasound. International Journal of Chemistry, Pharmacy & Technology, Vol. 2(No.5), pp-220-231, 2017.
  • Oglat AA, M. M., Suardi N, Abdelrahman MA, Oqlat MA, Oqlat A.A. (2018). A new scatter particle and mixture fl uid for preparing blood mimicking fluid for wall-less fl ow phantom. J Med Ultrasound;, {In press}.
  • Oglat AA, M. M., Suardi N, Oqlat MA, Abdelrahman MA, Oqlat AA, et al. . (2018). Chemical items used for preparing tissue-mimicking material of wall-less flow phantom for doppler ultrasound imaging. J Med Ultrasound 2018 ;, {In press}.
  • Oglat AA, S. N., Matjafri Mz, Oqlat MA, Abdelrahman MA, Oqlat AA. . (2018). A review of suspension‑scattered particles used in blood‑mimicking fluid for Doppler ultrasound imaging. J Med Ultrasound;, {In press}.
  • Ophir, J., Alam, S. K., Garra, B. S., Kallel, F., Konofagou, E. E., Krouskop, T.,. Merritt, C. R. B., Righetti, R., Souchon, R., Srinivasan, S., Varghese, T. . (2002). Elastography: imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics, 29((4)), 155.
  • Ramnarine, K. V., Anderson, T., & Hoskins, P. R. (2001). Construction and geometric stability of physiological flow rate wall-less stenosis phantoms. Ultrasound in Medicine and Biology, 27(2), 245-250.
  • Sun, C., Pye, S. D., Browne, J. E., Janeczko, A., Ellis, B., Butler, M. B., Sboros, V., Thomson, A., Brewin, M., Earnshaw, C. H, Moran, M. C. (2012). The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications. Ultrasound in Medicine and Biology, 38(7), 1262-1270.
  • Zhou, X., Kenwright, D. A., Wang, S., Hossack, J. A., & Hoskins, P. R. (2017). Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 64(1), 53-65.
  • Zhou, X., Xia, C., Khan, F., Corner, G. A., Huang, Z., & Hoskins, P. R. (2016). Investigation of ultrasound-measured flow rate and wall shear rate in wrist arteries using flow phantoms. Ultrasound in medicine & biology, 42(3), 815-823.