<

This Article Statistics
Viewed : 197 Downloaded : 106 Cited : 0


 

Determination of Groundwater Level Fluctuations by Artificial Neural Networks

Fatih Üneş, Mustafa Demirci, Zeki Mertcan, Bestami Taşar, Hakan Varçin, Yunus Ziya

Abstract

Groundwater level change is important in the determination of the efficient use of water resources and plant water needs. Groundwater level fluctuations were investigated using the variable of groundwater level, precipitation, temperature in the present study. The daily data of the precipitation, temperature and groundwater level are used which is taken from PI98-14 observation well station in Minnesota, United States of America. These data, which include information on rainfall, temperature and groundwater level of 2025 daily, were used as input in ANN method. The results were also compared with Multiple Linear Regression (MLR) method. According to this comparison, it was observed that the ANN and MLR method gave similar results for observation. The results show that ANN model will be useful for estimation of groundwater level to monitor possible changes in the future.

Keywords

Ground water level, Artificial neural networks, Multiple linear regression, Modeling

Volume 3, No 3, Supplement, pp 35-42, 2018



Download full text   |   How to Cite   |   Download XML Files

References
  • Bayazıt, M. (1981). Hidrolojide İstatistik Yöntemler. İstanbul Teknik Üniversitesi, Yayın No : 1197, 223 s., İstanbul (in Turkish).
  • Bayazıt, M., & Oğuz, B. (2005). Mühendisler için istatistik.Birsen Yayınevi (in Turkish).
  • Demirci, M., Unes, F., Kaya, Y. Z., Mamak, M., Tasar, B., & Ispir, E. (2017). Estimation of Groundwater Level Using Artificial Neural Networks: a Case Study of Hatay-Turkey. 10th International Conference Environmental Engineering .
  • Detienne, K. B., Detienne, D. H., & Joshi, S. A. (2003). Neural Networks As Statistical Tools For Business Researchers. Organizational Research Methods, 6(2), 236- 265.
  • Ergezer, H.; Dikmen M.,&Özdemir E. (2003). Yapay sinir ağları ve tanıma sistemleri. Pivolka, 2(6), 14-17 (in Turkish).
  • Kaya, Y. Z., Üneş, F., Demirci, M., Tasar, B., & Varcin, H. (2018). Groundwater Level Prediction Using Artificial Neural Network and M5 Tree Models. Air and Water Components of the Environment Conference, DOI: 10.24193/AWC2018_23
  • Koç, M. L., Balas C. E., & Arslan, A. (2004).Taş Dolgu Dalgakıranların Yapay Sinir Ağları İle Ön Tasarımı. İMO Teknik Dergi, 15(4), 3351-3375 (in Turkish).
  • Pegram, G.G.S., & James, W. (1972). Multilag Multivariate Autoregressive Model for the Generation of Operational Hydrology. Water Resources Research, Vol 8, No: 4, 1074- 1076.
  • Taşar, B., Kaya, Y. Z., Varçin, H., Üneş, F., & Demirci, M. (2017). Forecasting of suspended sediment in rivers using artificial neural networks approach. International Journal of Advanced Engineering Research and Science, 4(12), pp. 79-84.
  • Taşar, B., Üneş, F., Demirci, M., & Kaya, Y. Z. (2018) Yapay sinir ağları yöntemi kullanılarak buharlaşma miktarı tahmini. DÜMF Mühendislik Dergisi, 9(1), 543-551 (in Turkish).
  • USGS.gov | Science for a changing world [WWW Document], n.d. URL https://www.usgs.gov/
  • Üneş, F., Demirci, M., & Kişi, Ö. (2015a). Prediction of Millers Ferry Dam reservoir level in USA using artificial neural network. Periodica Polytechnica Civil Engineering, 59(3), 309-318.
  • Üneş, F., & Demirci, M. (2015b.) Generalized Regression Neural Networks For Reservoir Level Modeling. International Journal of Advanced Computational Engineering and Networking , 3, 81-84.