This Article Statistics
Viewed : 1464 Downloaded : 1085


Patient Specific Congestive Heart Failure Detection From Raw ECG signal

Yakup Kutlu*, Apdullah Yayık, Esen Yıldırım, Mustafa Yeniad, Serdar Yıldırım

DOI: 10.28978/nesciences.286250


Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validation

Download full text   |   How to Cite   |   Download XML Files

  • A.L. Goldberger and coworkers, 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220. Available at: http://circ.ahajournals.org/cgi/content/full/101/23/e215.
  • Bishop, C.M. & others, 1995. Neural networks for pattern recognition.
  • Braunwald E, Zipes DP, Libby P, B.R., 2004. Braunwald’s Heart Disease A Textbook of Cardiovascular Medicine 7th Editio., Philadelphia, USA: Saunders.
  • D., U.E., 2009. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Computer Methods and Programs in Biomedicine., pp.313–321.
  • Dabanloo, N.J. et al., 2010. Application of Novel Mapping for Heart Rate Phase Space and Its Role in Cardiac Arrhythmia Diagnosis. Computing in Cardiology, pp.209–212.
  • Duda, R.O. & Hart, P.E., Pattern Classification.pdf.
  • Engin, M., 2007. Spectral and wavelet based assessment of congestive heart failure patients. Computers in Biology and Medicine.
  • Işler Y, K.M., Konjestif Kalp Yetmezligi Teshisi için Kalp Hızı Degiskenligi Analizinde Dalgacık Entropisinin Etkisi. In IEEE 14th Signal Processing and Communications Applications Conference. pp. 1–4.
  • Işler, Y. & Kuntalp, M., 2007. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in biology and medicine, 37(10), pp.1502–10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17359959 [Accessed June 22, 2013].
  • Kamath, C., 2012a. A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals. Medical engineering & physics, 34(10), pp.1503–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22459502 [Accessed December 8, 2013].
  • Kamath, C., 2012b. A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R-R interval series. Medical engineering & physics, 34(7), pp.841–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22032833 [Accessed June 22, 2013].
  • Kannathal, N. et al., 2006. Cardiac state diagnosis using adaptive neuro-fuzzy technique. Medical Engineering & Physics, 28(8), pp.809–815.
  • Karmakar, C.K. et al., 2009. Novel feature for quantifying temporal variability of Poincare Plot: a case study. In Computers in Cardiology, 2009. pp. 53–56.
  • Maurice E.Cohen, D.L.H. and P.C.D., 1996. Applying Continuous chaotic Modeling to Cardiac Signal Analysis. Engineering in Medicine and Biology, (2), pp.97–102.
  • Suri, J. et al., 2007. Advances in cardiac signal processing, Springer.
  • Thuraisingham, R.A., 2010. A Classification System to Detect Congestive Heart Failure Using Second-Order Difference Plot of RR Intervals. Cardiology research and practice, 2009, p.807379. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2842886&tool=pmcentrez&rendertype=abstract [Accessed June 22, 2013].
  • Topol, E.J. & Califf, R.M., 2007. Textbook of cardiovascular medicine, Lippincott Williams & Wilkins.
  • Yayla, B., 2010. Kalp yetmezli̇kli̇ hastalarda adrenomedulli̇n ve probnp düzeyleri̇ni̇n ekokardi̇yografi̇ i̇le i̇li̇şki̇si̇. İstanbul Göztepe Araştırma ve Geliştirme hastanesi.