<

This Article Statistics
Viewed : 1840 Downloaded : 1345


 

GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean

Polina Lemenkova

Abstract

This manuscript summarizes the results of the geospatial analysis undertaken by means of Generic Mapping Tools (GMT). The comparative assessment of the bathymetry of the Kuril-Kamchatka hadal trench was performed for southern and northern segments separated by the Bussol Strait. The formation of the hadal trench is affected by the impacts of local geological and geophysical settings varying along the trench. The methodological approach is as follows. The profiling was undertaken using GMT modules ‘grdimage’, ‘grdtrack’ and ‘psxy’. The modelling consists of the collected data of 10706 observation samples from 52 profiles in southern part and 12726 from 62 profiles in the northern segment. The GMT modules ‘psrose’ and ‘pshistograms’ were used to plot histograms and rose diagrams visualizing bathymetric variables of depths. The geology was mapped using GMT modules ‘pscoast’, ‘grdcut’, ‘grdcontour’ and ‘psxy’ to plot lineaments and geological objects (ophiolites, faults, earthquakes, trench, magnetic anomalies, tectonic slabs, fracture zones and volcanoes). The base map is based on the ETOPO Global Relief Model. The comparison of the bathymetry shown variations in the northern and southern segments: southern part reaches -8,200 m maximal depths while northern has -7,800 m. This is influenced by the geological settings: earthquakes magnitude and seismisity are higher in the south-west. The submarine terraces and floodplains were observed at -4000 m depth forming landforms located southwards off the Bussol Strait. This geospatial analysis contributes to the development of the geological mapping with an example of the Kamchatka area, a region with high seismisity and repeated earthquakes.

Keywords

GMT, Bathymetry, Modelling, Mapping, Geospatial Analysis

Download full text   |   How to Cite   |   Download XML Files

References
  • Barr, I. D., & Spagnolo, M. (2013). Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. Geomorphology, 192, 15-29.
  • Brandt A., Alalykina, I., Fukumori, H., Golovand, O., Kniesz, K., Lavrenteva, A., Lörz, A.-N., Malyutina, M., Philipps-Bussau, K., & Stransky, B. (2018). First insights into macrofaunal composition from the SokhoBio expedition T (Sea of Okhotsk, Bussol Strait and northern slope of the Kuril-Kamchatka Trench). Deep-Sea Research Part II, 154, 106-120.
  • Beck, S. L., & Ruff, L. J. (1987). Rupture process of the great 1963 Kurile Islands earthquake sequence: asperity interaction and multiple event rupture. Journal of Geophysical Research, 92(14), 123-138.
  • Bindeman, I. N., Leonov, V. L., Izbekov, P. E., Ponomareva, V. V., Watts, K. E., Shipley, N., Perepelov, A. B., Bazanova, L. I., Jicha, B. R., Singer, B. S., Schmitt, A. K., Portnyagin, M. V., & Chen, C. H. (2010). Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. Journal of Volcanology and Geothermal Research, 189(1), 57–80.
  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. 2010. Geophysical Journal International, 181, 1-80.
  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International,101(2), 425–478.
  • Dobrovolski, A. D. & Zalogin, B.S. (1982). Seas of USSR. Moscow: Moscow University Press. [in Russian].
  • Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C. (2007). Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.
  • Gorbatov, A., Fukao, Y., Widiyantoro, S. & Gordeev, E. (2001). Seismic evidence for a mantle plume oceanwards of the Kamchatka–Aleutian trench junction. Geophysical Journal International, 146, 282-288.
  • Gorbatov, A., Kostoglodov, V., Suarez, G., & Gordeev, E. (1997). Seismicity and structure of the Kamchatka subduction zone, Geophysical Journal International, 102(17), 883-898.
  • Gorshkov, G. S. (1958). Catalog of the Active Volcanoes of the World Including Solfatara Fields. P. VII. Kurile Islands. Napoli: International Volcanological Association Press.
  • Gusiakov, V. K. (2016). Tsunamis on the Russian Pacific coast: history and current situation. Russian Geology and Geophysics, 57, 1259-1268.
  • Iliev, A. Y., Kaistrenko, V. M., Gretskaya, E. V., Tikhonchuk, E. A., Razjigaeva, N. G., Grebennikova, T. A., Ganzey, L. A., & Kharlamov, A. A. (2005). Holocene tsunami traces on Kunashir Island, Kurile subduction zone, in: Satake, K. (Ed.), Tsunamis: Case Studies and Recent Developments. Advances in Natural and Technological Hazards Research. Netherlands: Springer, 171-192.
  • Kao, H., & Chen, W. (1994). The double seismic zone in Kuril-Kamchatka: the tale of two overlapping single zones. Geophysical Journal International, 99 (B4), 6913-6930.
  • Kasahara, J., Sato, T., Mochizuki, K. & Kobayashi, K. (1997). Paleotectonic structures and their influence on recent seismo-tectonics in the south Kuril subduction zone. Island Arc, 6, 267–280.
  • Khomich, V. G., Boriskina, N. G., & Kasatkin, S. A. (2019). Geology, magmatism, metallogeny, and geodynamics of the South Kuril Islands. Ore Geology Reviews, 105, 151-162.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5(1), 28–42.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2014). Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the Int’l Conference, Minsk, Belarus: BSU Press, 85–90.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449-458.
  • Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P. (2006). The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI, Germany.
  • Lemenkova, P. (2011). Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherands: University of Twente, 158 pp.
  • Lemenkova, P., Promper, C., Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. Protecting Society through Improved Understanding. 11th Int’l Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), Banff, Canada, 279–285.
  • Lemenkova, P. (2018a). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35-42.
  • Lemenkova, P. (2018b). Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench, Turkish Journal of Maritime and Marine Sciences, 4, 146–155.
  • Lemenkova, P. (2019a). An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, 8(1), 1-9.
  • Lemenkova, P. (2019b). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas, Aquatic Research, 2, 73-91.
  • Lemenkova, P. (2019c). Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation, Aquatic Sciences and Engineering, 34, 51–60.
  • Lemenkova, P. (2019d) Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology. International Journal of Environmental Trends 3(1), 39–59.
  • Lemenkova, P. (2019e). Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics. International Journal of Engineering Technologies, 5(2), 90–99.
  • Lemenkova, P. (2019f). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65(4), 1-22.
  • Lemenkova, P. (2019g). Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
  • Lemenkova, P. (2019h). GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14, 39–48.
  • Lemenkova, P. (2019i). Plotting Ternary Diagrams by R Library ggtern for Geological Modelling. Eastern Anatolian Journal of Science 5 (2), 16–25.
  • Lemenkova, P. (2019j). K-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic Data. International Journal of Informatics and Applied Mathematics, 2(1), 1–26.
  • MacInnes, B., Kravchunovskaya, E., Pinegina, T., & Bourgeois, J. (2016). Paleotsunamis from the central Kuril Islands segment of the Japan-Kuril-Kamchatka subduction zone. Quaternary Research, 86, 54-66.
  • Maiorova, A. S. & Adrianov, A.V. (2018). Deep-sea sipunculans from the Kuril Basin of the Sea of Okhotsk and the T adjacent slope of the Kuril-Kamchatka Trench. Deep-Sea Research Part II, 154, 167–176.
  • Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B. F., Shigeno, K., & Yamaki, S. (2003). Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature, 424 (6949), 660-663.
  • NGDC/WDS (National Geophysical Data Center/World Data Service). Global Historical Tsunami Database. National Geophysical Data Center, NOAA.
  • Pflanz, D., Gaedicke, C., Freitag, R., Krbetschek, M., Tsukanov, N., & Baranov, B. (2013). Neotectonics and recent uplift at Kamchatka and Aleutian arc junction, Kamchatka Cape area, NE Russia. International Journal of Earth Sciences, 102, 903–916.
  • Pinegina, T. K., Bourgeois, J., Kravchunovskaya, E. A., Lander, A. V., Arcos, M. E., Pedoja, K., & MacInnes, B. T. (2013). A nexus of plate interaction: vertical deformation of Holocene wave-built terraces on the Kamchatsky Peninsula (Kamchatka, Russia). Geological Society of America Bulletin, 125 (9-10), 1554–1568.
  • Portnyagin, M., Manea, V. C. (2008). Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression. Geology, 36, 519-522.
  • Renkin, M. L., Sclater, J. G. (1988). Depth and age in the North Pacific, Journal of Geophysical Research, 93, 2919–2935.
  • Ruff, L., Kanamori, H. (1983). The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves. Physics of the Earth and Planetary Interiors, 31, 202-230.
  • Ruppert, N. A., Lees, J. M., & Kozyreva, N. P. (2007). Seismicity, earthquakes and structure along the Alaska-Aleutian and Kamchatka-Kurile Subduction Zones: a review. Geophysical Monograph Series, 172 doi:10.1029/172GM12
  • Schenke, H. W., Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 25(81), 16–21.
  • Selivestrov, N. I. (1998). Structure of the oceanic floor near Kamchatka and the geodynamics of the zone of Kuril-Kamchatka and Aleutians trenches Joint. Moscow: Nauchni Mir [in Russian].
  • Smirnov, Y. B., Sugrobov, V. M. & Yanovskiy, F. A. (1992). The terrestrial heat flow of Kamchatka, Journal of Volcanology and Seismology, 13, 181–210.
  • Smirnov, Y. B., & Sugrobov, V. M. (1980a). Terrestrial heat flow in the Kurile-Kamchatka & Aleutian provinces—II, The map of measured and background heat flow, Journal of Volcanology and Seismology, 1, 16-31 [in Russian].
  • Smirnov, Y. B., & Sugrobov, V. M. (1980b). Terrestrial heat flow in the Kurile-Kamchatka and Aleutian provinces—III, Assessment of temperature at depth and thickness of the lithosphere, Journal of Volcanology and Seismology, 2, 3-18 [in Russian].
  • Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957-1962.
  • Solomina, O., Wiles, G., Shiraiwa, T., & D'Arrigo, R. (2007). Multiproxy records of climate variability for Kamchatka for the past 400 years. Climate of the Past 3 (1), 119-128.
  • Suetova, I., Ushakova, L., Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. EOS Transactions of the American Geophysical Union, 72, 441.
  • Wessel, P., & Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research, 101, 8741–8743.
  • Wessel, P., & Smith, W. H. F. (1998). New version, of the Generic Mapping Tools re- leased. EOS Transactions of the American Geophysical Union, 79(47), 329. doi: 10.1029/98EO00426
  • Wessel, P., & Smith, W. H. F. (2018). The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook [Computer software manual]. U.S.A.
  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2019). The Generic Mapping Tools. GMT Man Pages. Release 5.4.5 [Computer software manual]. U.S.A.
  • Yoshida, M. (2017). Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. Physics of the Earth and Planetary Interiors, 268, 35–53.
  • Zayakin, Y. A., & Luchinina, A. A. (1987). Catalogue of Tsunamis on Kamchatka. Obninsk: VNIIGMI-Mtsd. [in Russian].