This Article Statistics
Viewed : 3218 Downloaded : 2287


Antibacterial Actions and Potential Phototoxic Effects of Volatile oils of Foeniculum sp. (fennel), Salvia sp. (sage), Vitis sp. (grape), Lavandula sp. (lavender)

Elif Ayse Erdogan Eliuz*, Deniz Ayas, Gulden Goksen

DOI: 10.28978/nesciences.286255


In the present study, the volatile compounds of essential oil of Foeniculum vulgare (fennel), Salvia officinalis (sage), Vitis vinifera (grape), Lavandula angustifolia (lavender) were analysed by gas chromatography-mass spectrometry (GC-MS) using the Nist and Willey libraries. It was determined that the main components of Foeniculum sp. were anethole (41.11%), carvacrol (9.18%). whereas main components of Salvia sp were 1.8 cineole (34.09%), caryophyllene (10.95%), camphor (9.44%), α-pinene (8.42%). Vitis sp. contained linoleic acid (36.98%), 2,4-decadienal (30.79%). Finally, volatile component of Lavandula sp. was linalool (33.57%), linalyl acetate (30.74%). Photoxic antibacterial activity of volatile oil of those plants against Escherichia coli (ATCC 25293), Klebsiella pneumoniae (10031), Salmonella thyphimurium, Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 25925), Enterococcus feacalis (ATCC 29212) were examined by using disc diffusion method. We demonstrated that volatile oil effectively can be activated by a standard LED light. In vitro, significant phototoxicity was demonstrated by volatile oil of Foeniculum sp. and Vitis sp. (P < 0.05), while minor phototoxicity was induced by Lavandula sp. Therefore, volatile oil of plant can be considered as a potential photosensitizer in the photochemical therapy.


Foeniculum vulgare (fennel), Salvia officinalis (sage), Vitis vinifera (grape), Lavandula angustifolia (lavender), photoactivated volatile oil, antimicrobial action

Download full text   |   How to Cite   |   Download XML Files

  • Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils . A review. Food and Chemical Toxicology, 46, 446–475.
  • Barbagallo, M. G., Pisciotta, A., Saiano, F. (2014). Identification of aroma compounds of Vitis vinifera L. flowers by SPME GC-MS analysis. Vitis, 53 (2), 111–113.
  • Bouhadjera, K., Bendahou, Z. M., Tabti, B. (2005). Anti-microbial Activity of extracts from Algerian Aristida pungens L. Pakistan Journal Biological Sciences,  8, 206–210.
  • Boussaada, O., Ammar, S., Saidana, D., Chriaa, J., Chraif, I., Daami, M., Helal, A.N., Mighri, Z. (2008). Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiological Research, 163, 87–95.
  • Buchbauer, G., Jirovetz L, Wasicky M, Nikiforov A. (1995). Aroma from red wine flowers. Z. Lebensm. Unters Forsch Journal,  200, 443-446.
  • Cardenas-Ortega, N.C., Gonzales-Chavez, M.M., Figueroa-Brito, R., Flores-Macias, A., Romo-Acuncion, D., Martinez-Gonzales, D.E., Perez-Moreno, V., Ramos-Lopez MA. (2015). Composition of the essential oil of Salvia ballotiflore (Lamiaceae) and its insecticidal activity. Molecules, 20 (15), 8048-8059.
  • Cavanagh, H.M.A., Wilkinson, J.M. (2002). Biological Activities of Lavender Essential Oil. Phytotheraphy research, 16, 301-308.
  • Chowdhury, J.U., Mobarok, M.H., Bhuiyan, M.N.I., Nandi, N.C. (2009). Constituents of essential oils from leaves and seeds of Foeniculum vulgare Mill. cultivated in Bangladesh. Bangladesh Journal of Botany, 38(2), 181-183.
  • Clinical and Laboratory Standards Institute (CLSI). (2014). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. 9th edition, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA.
  • Council of Europe. (2004). European Pharmacopoeia. 5th ed, Strasbourg Cedex, France.
  • Coutinho, H.D.,  Martins, J.G.,  Siqueira, J.P., Lima, EO. (2010). In vitro screening by phototoxic properties of Eugenia uniflora L., Momordica charantia L., Mentha arvensis L. and Turnera ulmifolia L. Brazilian Journal of Biosciences, 8(3), 299-301.
  • Dabur, R., Gupta, A., Mandal, T.K., Deepak, Singh DD, Bajpai, V., Gurav, A.M., Lavekar GS. (2007). Antimicrobial activity of some Indian medicinal plants. African Journal of Traditional Complementary Alternative Medicines, 4(3): 313-318.
  • Danh, L.T., Han, L.N., Triet, N.D.A., Zhao, J., Mammucari, R., Foster, N. (2013) Comparison of chemical composition, antioxidant and antimicrobial activity of Lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food and Bioprocess Technology, 6, 3481–3489.
  • Davis, P.H., Mill, R.R., Tan, K. (1988). Flora of Turkey and The East Aegean Islands (Suppl.). 10.th. Edinburg University Press, Scotland.
  • Demidova, T.N., & Hamblin, M.R. (2004). Photodynamic Therapy Targeted to Pathogens. International Journal Immunopathology and Pharmacology, 17(3), 245-254.
  • Diao, W, Hu, Q.P., Zhang, H., Xu, J.G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35, 109-116.
  • Dorman, H.J.D., & Deans, S.G. (2000). Antimicrobial agents from plants, antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316.
  • Ebeed, NM., Abdou, H.S., Booles H.F., Salah S.H., Ahmed, E.S., Fahmy K. (2010). Antimutagenic and chemoprevention potentialities of sweet fennel (Foeniculum vulgare Mill.) Hot Water Crude Extract. Journal of American Science, 6(9), 831-842.
  • Erdemoğlu, N., Turan, N.N., Cakıcı, I., Sener, B., Aydın, A. (2006). Antioxidant activities of some Lamiaceae plant extracts. Phytotherapy Research, 20 (1), 9-13.
  • Ergul, A., Kazan, K., Aras, S., Cevik, V., Celik, H., Soylemezoglu, G. (2011). AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome, 49 (5), 467-475.
  • Fabio, A., Cermelli, C., Fabio, G., Nicoletti, P., Quaglio, P. (2007). Screening of the antimicrobial effect of a variety of essential oils on microorganisms responsible for respiratory infections. Phytotherapy Research, 21, 374-377.
  • Fekrazad, R., Poorsattar, A., Mir, B., Barghi, V.G., Shams-Ghahfarokhi, M. (2015). Eradication of C. albicans and T. rubrum with photoactivated indocyanine green, Citrus aurantifolia essential oil and fluconazole. Photodiagnosis and Photodynamic Therapy. 12 (2), 289–297.
  • Figueiredo, A.C., Barrosso, J.G., Pedro, L.G., Scheffer, J.C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Journal Flavour Fragrance, 23, 213–226.
  • Hanamanthagouda, M.S., Kakkalameli, S.B., Naik, P.M., Nagella, P., Seetharamareddy, H. R., Murthy, H. N. (2010). Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chemistry, 118, 836–839
  • Harborne, J.B., & Willams, C.A. (2002). In Lavender-The Genus Lavandula, Medicinal and aromatic plants – Industrial Profiles, M. Lis-Balchin (ed.). London.
  • Hongratanaworakit, T. (2011). Aroma-therapeutic effect of massage blended essential oils on humans. Natural Product Communications,  6, 1199–1204.
  • Kamatou, G.P.P., Van Zyl, R.L., Davids, H., Van Heerden, F.R., Lourens, A.C.U., Viljoen, A.M. (2008). Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. South African Journal of Botany, 74 (2), 238-43.
  • Khalid, S., Mohamed, Bammou., Mhamed, R., Tariq, B.E.D., Fatima, J., Laila, N., Lhoussaine, E.R. (2015). Antifungal potential of the Seed and Leaf Foeniculum vulgare Mill essential Oil in liquid and vapor phase against phytopathogenic fungi. Journal of Applied Pharmaceutical Science, 11, 050-054.
  • Kooti, W., Moradi, M., Ali-Akbari, S., Sharafi-Ahvazi1, N., Asadi-Samani, M., Ashtary-Larky, Damoon. (2015). Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. Journal of HerbMed Pharmacology,  4(1), 1-9.
  • Kunicka-Styczynska, A.M., Kalemba, D., Sikora, D. (2009). Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. Journal of Applied Microbiology, 107, 1903–1911.
  • Li, B., Zhang, C., Penga, L., Lianga, Z., Yane, X., Zhue, Y, Liu, Y. (2015). Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC–MS and HPLC methods. Industrial Crops and Products,  69, 329–334.
  • Lis-Balchin, & M., Hart, S. (1999).  Studies on the mode of action of the essential oil of lavender (Lavandula angustifolia P. Miller). Phytotherapy Research, 13, 540–542.
  • Lis-Balchin, M. (2002).  In Lavender, The Genus Lavandula, Medicinal and aromatic plants - Industrial Profiles, M. Lis-Balchin (ed.). London.
  • Lo Cantore, P., Iacobellis, N.S., De Marco, A., Capasso, F., Senatore, F. (2004). Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller Var. vulgare (Miller) essential oils. Journal of Agricultura Food Chemistry, 52, 7862–7866.
  • Lopez, A., Hudson, J.B., Towers, G.H.N. (2001). Antiviral and antimicrobial activities of Colombian medicinal plants. Journal of Ethnopharmacology,  77, 189-196.
  • Lüker, J., Bowen, P., Bohlmann, J. (2004). Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthase in grapevine flowers and berries. Phytochemistry, 65, 2649-2659.
  • Marotti, M., Piccaglia, R., Giovanelli, E., Stanley, G.D.,  Eaglesham E. (1994). Effects of variety and ontogenic stages on the essential oil composition and biological activity of fennel (Foeniculum vulgare Mill.). Journal of Essential Oil Research, 6: 57-62.
  • Martin, D.M., Toub, O., Chiang, A., Lo, B.C., Ohse, S., Lund, S.T., Bohlmann, J. (2009). The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains. Proceedings of Nattional Academy of Sciences, 106, 7245-7250.
  • Martins, N., Barros, L., Santos-Buelga, C., Henriques, M., Silva S., Ferreira, I.C.F.R. (2015). Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L., Food Chemistry. 170, 378–385.
  • McFarland J. (1987). Standardizasyon bacteria culture for the disc diffusion assay. Journal of American Medical Association, 49, 1176-1178.
  • Menichini, F.,  Tundis, R., Loizzo, M.R., Bonesi, M., Provenzano, E., de Cindio, B., Menichini, F. (2010). In vitro photo-induced cytotoxic activity of Citrus bergamia and C. medica L. Pharmaceutical Biology, 48 (9), 1059–1065 .
  • Michielin, E.M.Z., Bresciani, L.F.V., Danielski, L., Yunes, R.A., Ferreira, S.R.S. 2005. Composition profile of horsetail (Equisetum giganteum L.) oleoresin: comparing SFE and organic solvents extraction. Journal of Supercritical Fluids, 33, 131–138.
  • Oliveira, D,A., Salvador, A.A., Smânia, A., Smânia, E.F.A., Maraschin, M., Ferreira, S.R.S. (2013). Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. Journal of Biotechnology, 164, 423–432.
  • Ozcan, B., Esen, M., Sangun, M.K., Coleri, A., Caliskan, M. (2010). Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology, 31, 637-41.
  • Ozcan, M.M., Chalchat, J.C., Arslan, D.,  Ates,  A., Unver, A. (2007). Comparative essential oil composition and antifungal effect of bitter fennel (Foeniculum vulgare ssp. piperitum) fruit oils obtained during different vegetation. Journal of Medicinal Food,  9(4), 552-561.
  • Ozcan, M.M., Sagdic, O., Ozkan, G. (2006). Inhibitory effects of spice essential oils on the growth of Bacillus species. Journal of Medicinal  Food , 9 (3), 418–421.
  • Parekh, J., & Chanda, S. (2006). In-vitro Antimicrobial Activities of Extracts of Launaea procumbens Roxb. (Labiateae), Vitis vinifera L. (Vitaceae) and Cyperus rotundus L. (Cyperaceae). African Journal of Biomedical Research, 9, 89-93.
  • Peter, K.V. (2004). Handbook of Herbs and Spices, 2. CRC Press, Woodhead Publishing: Cambridge.
  • Prabuseenivasan, S., Jayakumar, M.,  Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC complementary Alternative Medicine, 6, 39–45.
  • Raal A, Orav A and Arak E. Essential oil composition of Foeniculum vulgare Mill. fruits from pharmacies in different countries. Nat. Prod. Res., 2012; 26(13): 1173-1178
  • Rahimmalek, M., Sayed Tabatabaei, B. E., Etemadi, N., Goli, S. A. H, Arzani, A. and Zeinali, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the Field Conditions. Industrial Crops and Products, 29, 348-355.
  • Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M.,  Rezaee, M.B., Jaimand, K., Alinezhad S., Saberi R., Yoshinari, T. (2009). Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Control, 20, 1018–1024.
  • Ruberto, G., Baratta, M.T., Deans, S. G., Dorman. H. J. (2000). Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Medica, 66 (8), 687–693.
  • Sanchez-Palomo, E., Garcia-Carpintero, G., Alonsovillegas, R., Gonzales Vinas, M.A. (2010). Characterization of aroma compounds of Verdejo white wines from the La Mancha region by odour activity values. Flavour and Fragrance, 25, 456-462.
  • Shaw, S.L., Mitloehner, F.M., Jackson, W., Depeters, E.J., Fadel, J.G., Robinson, P.H., Holzinger, R., Goldstein, A.H. (2007). Volatile organic compound emissions from dairy cows and their wastes as measured by protontransfer–reaction mass spectrometry. Environmental Science Technology, 14, 1310-1316.
  • Sonboli, A., Babakhani, B., Reza, M.A. (2006). Antimicrobial activity of six constituents of essential oil from Salvia. A Journal of Biosciences, 61, 160-164.
  • Sur, S.V., Tuljupa, F.M., Sur, L.I. (1991). Gas chromatographic determination of monoterpenes in essential oil medicinal plants. Journal of Chromatography, 542, 451–458.
  • Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., Polissou, M. (2005). Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90, 333–340.
  • Tepe, B., Donmez, E., Unlu, M., Candan, F., Daferera, D., Vardar-Unlu, G., Polissiou, M., Sokmen, A. (2004). Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha. (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chemistry, 84, 519–525.
  • Tıp-Pyang, S., Sathanasaowapak, S., Kokpol, U., Phuwapraisirisan, P. (2000). Antibacterial flavonoids from Boesenbergia pandurata. ACGC. Chemistry Research Communications, 10: 21-26.
  • Topçu G., Goren, A.C. (2007). Biological Activity of Diterpenoids Isolated from Anatolian Lamiaceae Plants. Records Natural Products, 1(1), 1-16.
  • Torras-Claveria, L., Jauregui, O., Bastida, J., Codina, C., Viladomat, F. (2007). Antioxidant activity and phenolic composition of Lavandin (Lavandula x intermedia Emeric ex Loiseleur) waste. Journal Agricultural Food Chemistry, 55, 8436–8443.
  • Upadhyay, R.K., Dwivedi, P., Ahmad, S. (2010). Antimicrobial activity of photo-activated cow urine against certain pathogenic bacterial strains. African Journal of Biotechnology, 9 (4), 518-522.
  • Usacheva, M.N., Teichert, M.C., Biel, M.A. (2001). Comparison of the methylene blue and toluidine blue potobactericidal efficacy againstgram – positive and gram negative microorganisms. Lasers in Surgery and Medicine, 29:165.
  • Vislocky, L.M., Fernandez, M.L. (2010). Biomedical effects of grape products. Nutrition Review, 68, 656–670.
  • Walch, S.G., Kuballa, T., Stuhlinger, W., Lachenmeier, D.W. (2011). Determination of the biologically active flavour substances thujone and camphor in foods and medicines containing sage (Salvia officinalis L.). Chemistry Central Journal, 5, 44.
  • Wu, Y.B., Ni, Z.Y., Shi, Q.W., Dong, M., Kiyota, H., Gu, Y.C., Cong, B. (2012). Constituents from Salvia species and their biological activities, A review. Chemical Reviews, 112, 5967-6026.
  • Zore, G.B., Thakre Rathod, V., Karuppayıl, S.M. (2010). Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses, 54, 99-109.