This Article Statistics
Viewed : 802 Downloaded : 568


Haar wavelet collocation method for the approximate solutions of Emden-Fowler type equations

Sertan Alkan*

DOI: 10.28978/nesciences.349267


Haar wavelet collocation method, linear Emden-Fowler type equations, initial value problems

Download full text   |   How to Cite   |   Download XML Files

  • Ahamed, M. S., Hasan, M.K. , Alam, M. S., (2017) A New Approach to Homotopy Perturbation Method for Solving Emden–Fowler Equations., Applied Mathematical Sciences 11.40: 1955-1964.
  • Bataineh, A. S., Mohd, S. M. N., Hashim, I., (2009) Homotopy analysis method for singular IVPs of Emden–Fowler type. Communications in Nonlinear Science and Numerical Simulation 14.: 1121-1131.
  • Chang, P., Piau, P, (2008) Haar wavelet matrices designation in numerical solution of ordinary differential equations, IAENG International Journal of Applied Mathematics 38.3 (2008): 164-168.
  • Chen, C.F., Hsiao, C.H., (1997) Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc.: Part D 144 (1) 87–94.
  • Chowdhury, M. S. H., Hashim, I., (2009) Solutions of Emden–Fowler equations by homotopy-perturbation method. Nonlinear Analysis: Real World Applications 10.1: 104-115.
  • Hsiao, C. H., (2004) Haar wavelet approach to linear stiff systems. Mathematics and Computers in Simulation vol 64, pp. 561-567.
  • Ibis, B., (2012) Approximate analytical solutions for nonlinear Emden-Fowler type equations by differential transform method. arXiv preprint arXiv:1211.3521.
  • Iqbal, S., Javed, A., (2011) Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Applied Mathematics and Computation 217.19: 7753-7761.
  • Lepik, U., (2008) Haar wavelet method for solving higher order differential equations Int. J. Math. Comput 1 : 84-94.
  • Lepik, U., (2005) Numerical solution of differential equations using Haar wavelets. Mathematics and Computers in Simulation vol 68, pp. 127-143.
  • Lepik, U., (2009) Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214: 468–478.
  • Li, Y., Zhao, W., (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 2276–2285.
  • Rehman, M. U., Khan, R. A., A., (2012) numerical method for solving boundary value problems for fractional differential equations. Applied Mathematical Modelling, 36(3), 894-907.
  • Tabrizidooz, H. R., Marzban, H. R., Razzaghi, M., (2009) Solution of the generalized Emden–Fowler equations by the hybrid functions method. Physica Scripta 80.2: 025001.
  • Wazwaz, A. M., Rach, R., Bougoffa, L., Duan, J. S., (2014) Solving the Lane–Emden–Fowler type equations of higher orders by the Adomian decomposition method. Comput. Model. Eng. Sci.(CMES) 100.6: 507-529.
  • Wazwaz, A.M., (2005) Adomian decomposition method for a reliable treatment of the Emden–Fowler equation”, Appl. Math. Comput. 161, 543–560.
  • Wazwaz, A.M., (2005) Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method, Appl. Math.Comput. 166 (2005) 638–651.
  • Wazwaz, A.M., (2015) Solving Two Emden-Fowler Type Equations of Third Order by the Variational Iteration Method. Applied Mathematics & Information Sciences 9.5: 2429.