This Article Statistics
Viewed : 1073 Downloaded : 541


Detection and 3D Modeling of Brain Tumors Using Image Segmentation Methods and Volume Rendering

Devrim Kayalı *, Ulus Çevik


This paper is on detecting brain tumors using MRI images, and obtaining a 3D model of the detected tumor. With the developed software, image segmentation algorithms were applied to MRI images to separate tumor from healthy brain tissues. In the development phase, various image segmentation algorithms were tried, and high success rates were aimed. After obtaining an algorithm with a high success rate, a 3-dimensional image of the detected tumor will be generated using volume rendering. With this image, features of the tumor such as its location, shape and how it spreads in the brain can be observed.


Tumor, mri, image segmentation, volume rendering

Volume 3, No 3, SUPPLEMENT I of SYMPOSIUM ARTICLES, pp 79-86, 2018

Download full text   |   How to Cite   |   Download XML Files

  • A growing archive of medical images of cancer. (n.d.). Retrieved from http://www.cancerimagingarchive.net/
  • Ananda, R. S., & Thomas, T. (2012). Automatic segmentation framework for primary tumors from brain MRIs using morphological filtering techniques. 2012 5th International Conference on BioMedical Engineering and Informatics. doi:10.1109/bmei.2012.6512995
  • Angulakshmi, M., & Priya, G. L. (2018). Brain tumour segmentation from MRI using superpixels based spectral clustering. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2018.01.009
  • Banerjee, M., Chowdhury R. and Kumar S. (2015). Detection Of Brain Tumor From MRI Of Brain. International Journal of Information Research and Review, 2(12), 1555-1559.
  • Dubey, R. B., Hanmandlu, M., & Gupta, S. K. (2010). An Advanced technique for volumetric analysis. International Journal of Computer Applications,1(1), 91-98. doi:10.5120/13-117
  • Gibbs, P., Buckley, D. L., Blackband, S. J., & Horsman, A. (1996). Tumour volume determination from MR images by morphological segmentation. Physics in Medicine and Biology,41(11), 2437-2446. doi:10.1088/0031-9155/41/11/014
  • Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging,31(8), 1426-1438. doi:10.1016/j.mri.2013.05.002
  • Isselmou, A. E., Zhang, S., & Xu, G. (2016). A Novel Approach for Brain Tumor Detection Using MRI Images. Journal of Biomedical Science and Engineering,09(10), 44-52. doi:10.4236/jbise.2016.910b006
  • Kanmani M. and Pushparani M. (2016). Brain Tumor Detection And Classification. International Journal of Current Research, 8(5), 31634-31637.
  • Kumar, S. (2011). Detection of Brain Tumor-A Proposed Method. Journal of Global Research in Computer Science, 2(1), 55-63.
  • Mitra, S., Banerjee, S., & Hayashi, Y. (2017). Volumetric brain tumour detection from MRI using visual saliency. Plos One,12(11). doi:10.1371/journal.pone.0187209
  • Narayanan, K. and Yogesh Karunakar. (2018). 3-D Reconstruction of Tumors in MRI Images.
  • Prastawa, M., Bullitt, E., Ho, S., & Gerig, G. (2003). Robust Estimation for Brain Tumor Segmentation. Lecture Notes in Computer Science Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003,530-537. doi:10.1007/978-3-540-39903-2_65
  • Samriti and Paramveer Singh. (2016). Brain Tumor Detection Using Image Segmentation. International Journal Of Engineering Development And Research (IJEDR).
  • Sudharani, K., Rashmi, K., Sarma, T. C. and Prasad, K. S. (2016). 3D Multimodal MRI Brain Tumor Segmentation: A Volume Rendering Approach. International Journal of Current Trends in Engineering & Research (IJCTER).
  • Toum, K. M., Mustafa, Z. A., Ibraheem, B. A., & Hamza, A. O. (2017). Brain Tumor Segmentation From Magnetic Resonance Imaging Scans. Journal of Clinical Engineering,42(3), 115-120. doi:10.1097/jce.0000000000000223