This Article Statistics
Viewed : 1094 Downloaded : 583


The Evaluation and Comparison of Daily Reference Evapotranspiration with ANN and Empirical Methods

Fatih Üneş*, Süreyya Doğan, Bestami Taşar, Yunus Ziya Kaya, Mustafa Demirci


Evapotranspiration is an important parameter in hydrological and meteorological studies, and accurate estimation of evaporation is important for various purposes such as the development and management of water resources. In this study, daily reference evapotranspiration (ET0) is calculated by using Penman-Monteith equation, which is accepted as standard equation by FAO (Food and Agriculture Organization). ET0 is tried to be estimated by using Hargreaves-Samani and Turc traditional equations and results are compared with Artificial Neural Network (ANN) model performance. A station which is stated near to the Hartwell Lake (South Carolina, USA) was chosen as the study area. Average daily air temperature (T), highest (Tmax) and lowest daily air temperatures (Tmin), wind speed (U), solar radiation (SR) and relative humidity (RH) were used for daily average evapotranspiration estimation. Feed forward-back-propagation ANN method is used for model creation. Comparison between empirical equations and ANN model shows that ANN model performance for daily ET0 estimation is better than others.


Evapotranspiration, Penman-Monteith equation, Hargreaves-Samani equation, Turc equation, Artificial Neural Network

Volume 3, No 3, SUPPLEMENT I of SYMPOSIUM ARTICLES, pp 54-64, 2018

Download full text   |   How to Cite   |   Download XML Files

  • Abtew, W. (1996). Evapotranspiration measurement and modeling for three wetland systems in South Florida. Water Resour. Bull. 32, 465–473.
  • Aytek, A., Güven, A.,Yüce, M.İ., & Aksoy, H. (2008). An explicit neural network formulation for evapotranspiration. Hydrological Sciences Journal, 53, 4, 893-904, DOI: 10.1623/ hysj.53.4.893.
  • Choudhury, B.J. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal ofHydrology, 216 (12), 99–110. doi:10.1016/S0022-1694(98)00293-5.
  • Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing Applications, 23, 145-151.
  • Demirci, M., Üneş, F., & Aköz, M.S. (2015). Prediction of cross-shore sandbar volumes using neural network approach. Journal of Marine Science and Technology 20(1), 171-179.
  • Demirci, M., Unes, F., & Akoz, M. S. (2016). Determination of nearshore sandbar crest depth using neural network approach. International Journal of Advanced Engineering Research and Science, 3(12).
  • Doğan, E., Işık, S., & Sandalci, M. (2007). Estimation of daily evaporation using artificial neural networks. Teknik Dergi, 18(2), 4119-4131.
  • Fenga, Y., Cuib, N., Zhaob, L., Hud, X., & Gonga, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376–383.
  • Gümüş,V., Yenigün, K., Toprak, F., & Baçi, N. (2018). Şanlıurfa ve Diyarbakır istasyonlarında sıcaklık tabanlı buharlaşma tahmininde YSA, ANFIS ve GEP yöntemlerinin karşılaştırılması, DÜMF Mühendislik Dergisi 9, 553 – 562 (in Turkish).
  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Appl. Engng. Agric. 1(2), 96–99.
  • Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practices no. 70., ASCE, New York, USA.
  • Kaya, Y. Z., Mamak, M., & Unes, F. (2016). Evapotranspiration Prediction Using M5T Data Mining Method. International Journal of Advanced Engineering Research and Science (IJAERS), 3(12), 225-229.
  • McKenzie RS., & Craig AR. (2001). Evaluation of river losses from the Orange River using hydraulic modelling. J Hydrol. 241, (12), 62–9.
  • Partal, T. (2016). Comparison of wavelet based hybrid models for daily evapotranspiration estimation using meteorological data. KSCE Journal of Civil Engineering, 20(5), 2050–2058
  • Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proc R Soc Lond 193:120–146
  • Romanenko, V.A. (1961). Computation of the Autumn Soil Moisture Using a Universal Relationship for a Large Area. Ukrainian Hydrometeorological Research Institute, Kiev, No. 3.
  • Taşar, B., Kaya, Y. Z., Varçin, H., Üneş, F., & Demirci, M. (2017). Forecasting of suspended sediment in rivers using artificial neural networks approach. International Journal of Advanced Engineering Research and Science, 4(12).
  • Taşar, B., Üneş, F., Demirci, M., & Kaya, Y. Z. Yapay sinir ağları yöntemi kullanılarak buharlaşma miktarı tahmini. DÜMF Mühendislik Dergisi, 9(1), 543-551 (in Turkish).
  • Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geograph. Rev., 38, 55-94
  • Turc, L. (1961). Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Ann. Agronomiques 12, 13–49.
  • USGS.gov | Science for a changing world [WWW Document], n.d. URL https://www.usgs.gov/
  • Warnaka & Pochop. (1988). Analysis of Equations for Free Water Evaporation Estimates. Water Resources Research 24(7), 979-984. DOI: 10.1029/WR024i007p00979
  • Yurtoğlu, (2005). Yapay sinir ağlari metodolojisi ile öngörü modellemesi: bazı makroekonomik değişkenler için Türkiye örneği, DPT (in Turkish).
  • Ünes, F., Yildirim, S., Cigizoglu, H.K., & Coskun, H. (2013). Estimation of dam reservoir volume fluctuations using artificial neural network and support vector regression. Journal of Engineering Research, 1(3), 53-74.
  • Üneş, F., Demirci, M., & Kişi, Ö. (2015). Prediction of millers ferry dam reservoir level in usa using artificial neural network. Periodica Polytechnica Civil Engineering, 59(3), 309–318.
  • Ünes, F., Gumuscan, F.G., &Demirci, M. (2017). Prediction of Dam Reservoir Volume Fluctuations Using Adaptive Neuro Fuzzy Approach. EJENS, 2 (1), 144-148.