<

This Article Statistics
Viewed : 28 Downloaded : 18


 

The potential thermophilic Bacilli contaminants for dairy industry

Basar Karaca*, Arzu Coleri Cihan

Abstract

Though the biofilms of thermophilic, endospore-forming bacilli have received increasing interest in recent years, nature their biofilms are still unclear. In the current study, a comparative characterization of biofilm-forming patterns of totally 105 isolates and reference strains belonging to Anoxybacillus (85) and Geobacillus (20) genera were investigated. Various species belonging to these two genera have been screened for their biofilm production responses in milk, and their biofilm production patterns were also compared with their lactose and casein utilization. Thereby, this is the first report which displays strong biofilm producing behaviours of some thermophilic species in milk such as G. thermoglucosidans, A. caldiproteolyticus, A. suryakundensis, A. salavatliensis, and A. kamchatkensis subsp. asaccharedens except for well-known members like G. steraothermophilis and A. flavithermus. It was also assigned that elevated incubation temperature (65°C) had a stimulative effect on both biofilms forming capacities of Geobacillus and Anoxybacillus. Nevertheless, no direct correlation was found between biofilm formation capacity and lactose or casein catabolism characteristics. Finally, crystal violet binding assay, allowing the determination of the biofilm production amounts of microorganisms relatively in a short time, has been optimized. In this context, a methodological contribution has been provided to the literature in order to determine the possible biofilm production responses of thermophilic biofilms in the dairy industry.

Keywords

Thermophilic bacilli, Geobacillus, Anoxybacillus, biofilm, dairy industry

Download full text   |   How to Cite   |   Download XML Files

References
  • Cihan, A. C., Ozcan, B., Tekin, N., & Cokmus, C. (2011). Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey. World Journal of Microbiology and Biotechnology, 27(11), 2683.
  • Koc, M., Cokmus, C., & Cihan, A. C. (2015). The genotypic diversity and lipase production of some thermophilic bacilli from different genera. Brazilian Journal of Microbiology, 46(4), 1065-1076.
  • Bernbom, N., Ng, Y. Y., Jørgensen, R. L., Arpanaei, A., Meyer, R. L., Kingshott, P., & Gram, L. (2009). Adhesion of food‐borne bacteria to stainless steel is reduced by food conditioning films. Journal of Applied Microbiology, 106(4), 1268-1279.
  • Bezuidt, O. K., Pierneef, R., Gomri, A. M., Adesioye, F., Makhalanyane, T. P., Kharroub, K., & Cowan, D. A. (2016). The Geobacillus pan-genome: implications for the evolution of the genus. Frontiers in Microbiology, 7, 723.
  • Burgess, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M., & Flint, S. H. (2009). The formation of spores in biofilms of Anoxybacillus flavithermus. Journal of Applied Microbiology, 107(3), 1012-1018.
  • Burgess, S. A., Lindsay, D., & Flint, S. H. (2010). Thermophilic bacilli and their importance in dairy processing. International Journal of Food Microbiology, 144(2), 215-225.
  • Claus, D., Berkeley, R. C. W., Genus Bacillus. 1105–1139. Bergey’s Manual of Systematic Bacteriology, 1986, pp. 1105–1139. Williams and Williams, Baltimore. ISBN 9780683410518.
  • De Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J., & De Vos, P. (2004). Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Applied and Environmental Microbiology, 70(6), 3664-3672.
  • Denny, C. B. (1981). Thermophilic organisms involved in food spoilage: introduction. Journal of Food Protection, 44(2), 144-145.
  • Flint, S., Palmer, J., Bloemen, K., Brooks, J., & Crawford, R. (2001a). The growth of Bacillus stearothermophilus on stainless steel. Journal of Applied Microbiology, 90(2), 151-157.
  • Flint, S. H., Ward, L. J., & Walker, K. M. (2001). Functional grouping of thermophilic Bacillus strains using amplification profiles of the 16S–23S internal spacer region. Systematic and applied microbiology, 24(4), 539-548.
  • Hayes, P. R., Quality Assurance and Production Control, 1995, In: Hayes P.R. (eds) Food Microbiology and Hygiene. Springer, Boston, MA. ISBN 978-1-4613-6574-7.
  • Hill, B. M., & Smythe, B. W. (2012). Endospores of thermophilic bacteria in ingredient milk powders and their significance to the manufacture of sterilized milk products: an industrial perspective. Food Reviews International, 28(3), 299-312.
  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Food protection with high temperatures, and characteristics of thermophilic microorganisms. Modern food microbiology, 415-441.
  • Kilic, T., Karaca, B., Ozel, B. P., Ozcan, B., Cokmus, C., & Coleri Cihan, A. (2017). Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms. Biofouling, 33(4), 352-367.
  • Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1475), 1929-1940.
  • Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2), 133-147.
  • Parkar, S. G., Flint, S. H., Palmer, J. S., & Brooks, J. D. (2001). Factors influencing attachment of thermophilic bacilli to stainless steel. Journal of Applied Microbiology, 90(6), 901-908.
  • Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37(5), 664-698.
  • Ronimus, R. S., Parker, L. E., Turner, N., Poudel, S., Rückert, A., & Morgan, H. W. (2003). A RAPD-based comparison of thermophilic bacilli from milk powders. International Journal of Food Microbiology, 85(1-2), 45-61.
  • Scott, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M., & Flint, S. H. (2007). The formation of thermophilic spores during the manufacture of whole milk powder. International Journal of Dairy Technology, 60(2), 109-117.
  • Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175-179.
  • Suzuki, Y., Kishigami, T., Abe, S. (1976). Production of extracellular alpha-glucosidase by a thermophilic Bacillus species, Applied and Environmental Microbiology, 31(6), 807-812.
  • Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P, & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410.
  • Vestby, L. K., Møretrø, T., Langsrud, S., Heir, E., & Nesse, L. L. (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC veterinary research, 5(1), 20.
  • Yuan, D. D., Liu, G. C., Ren, D. Y., Zhang, D., Zhao, L., Kan, C. P., ... & Zhang, L. B. (2012). A survey on occurrence of thermophilic bacilli in commercial milk powders in China. Food Control, 25(2), 752-757.