This Article Statistics
Viewed : 19 Downloaded : 312


Determination of Antibacterial Effect of Nannochloropsis oculata Against Some Rainbow Trout Pathogens

I.Tülay Çağatay*, Mehmet Özbaş, H. Emre Yılmaz, Noha Ali


In this study, antibacterial activity of Nannochloropsis oculata which were grown in proper culture condition was searched with their extracts that obtain by using different solvent (methanol, ethanol, chloroform). The antibacterial effects of algal extracts were evaluated by using disc diffusion method against L. garvieae, F. psychrophilum and Y. ruckeri. As the results of the study, it was found that the chloroform extracts of N. oculata showed strong antibacterial activities, F. psychrophilum was the high resistant strain against to antibacterial effects of the extracts, L. garvieae and Y. ruckeri were the two most susceptible bacteria strains. The results confirm the possible use of N. oculata as a source of antimicrobial compounds or as a health-promoting food for aquaculture.


Nannochloropsis oculata, antimicrobial effect, fish diseases

Download full text   |   How to Cite   |   Download XML Files

  • Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2009). Characterization of nutraceutical compounds in blue green alga S. maxima. Electronic Journal of Environmental, Agricultural & Food Chemistry, 8 (12).
  • Akaylı, T., Çanak, Ö., Yardımcı, R., Ürkü, Ç. & Ökmen, D. (2020). A Mixed Frigoribacterium faeni and Lactococcus garvieae Infection in Cultured Rainbow Trout (O. mykiss). Kahraman Maraş Sütçü İmam Üniersitesi Tarım Doğa Dergisi, 23(6), 1569-1577.
  • Aksu, Z. & Dönmez, G.A. (2003). Comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere, 50(8), 1075-1083.
  • Altun, S., Kubilay, A. & Diler, Ö. (2010). Investigation of phenotypical and serological properties of Yersinia ruckeri strains. Kafkas University Journal of faculty of Veterinary, 16, 223-229(In Turkish).
  • Austin, B. & Austin, D.A. (2012). Bacterial fish pathogens, Heidelberg: Springer (652).
  • Balta, F., Sandalli, C., Kayis, S. & Ozgumus, O.B. (2010). Molecular analysis of antimicrobial resistance in Y. ruckeri strains isolated from rainbow trout (O. mykiss) grown in commercial fish farms in Turkey. Bulletin of the European Association of Fish Pathologists, 30(6), 211-219.
  • Bansemir, A., Blume, M., Schröder, S. & Lindequist, U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252: 79-84.
  • Bhuvaneswari, G.R., Shukla, S.P., Makesh, M., Thirumalaiselvan, S., Sudhagar, S. A., Kothari, D.C. & Singh, A. (2013). Antibacterial activity of Spirulina (A. platensis Geitler) against bacterial pathogens in aquaculture. Israeli Journal of Aquaculture-Bamidgeh, 65, 1-8.
  • Bloor, S. & England, R.R. (1989). Antibiotic production by the cyanobacterium N. muscorum. Journal of Applied Phycology, 1, 367-372.
  • Bradshaw, L.J. (1992). Laboratory Microbiology, 4th edn., Saunders College Publishing.
  • Cirik, S. & Gökpınar, Ş. (2006). Plankton Knowledge and Culture, 4. Print, Ege Üniv. Publications, Faculty of Fisheries No:47, Textbook index No:17, Bornova- İzmir (In Turkish).
  • Durmaz, Y. (2006). Effects of nitrogen sources and concentration on the growth and pigment composition of the Nannochloropsis oculata (Droop, 1955) (Eustigmatophyceae). Ege University, Journal of Fisheries & Aquatic Sciences, 23(3), 295-299 (In Turkish).
  • Duru M.P. & Yılmaz H.K. (2013). Utilization of Microalgae as a Source of Pigment in Fish Feed. Turkish Journal of Scientific Reviews, 6(2), 112-118 (In Turkish).
  • El-Sheekh, M.M., Osman, M.E.H., Dyab, M.A. & Amer, M.S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium N. muscorum. Environmental Toxicology and Pharmacology, 21, 42-50.
  • Falaise, C., François, C., Travers, M.A., Morga, B., Haure, J., Tremblay, R., Turcotte F., Pasetto P., Gastineau R., Hardivillier Y. & Leignel V. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs, 14(9), 159.
  • Hafsa, B.M., Ismail, B.N., Garrab, M., Aly, R., Gagnon, J. & Naghmouchi, K. (2017). Antimicrobial, antioxidant, cytotoxic and anticholinesterase activities of water-soluble polysaccharides extracted from microalgae I. galbana and N. oculata. Journal of the Serbian Chemical Society, 82(5), 509-522.
  • Heuer, O.E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I. & Angulo, F.J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253.
  • Issa, A.A. (1999). Antibiotic production by the Cyanobacteria O. angustissima and C. parietina. Environmental Toxicology and Pharmacology, 8, 33-37
  • Jones, D.A., Kurmaly, K. & Arshad, A. (1987). Penaeid shrimp hatchery trials using microencapsulated diets. Aquaculture, 64, 133-146.
  • Katırcıoğlu, H., Beyatlı, Y., Aslim, B., Yüksekdağ, Z. & Atıcı, T. (2006). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology, 2, 2.
  • Kubilay, A. &Timur, G. (2001). Determination of antibody production by IFAT and ELISA in rainbow trout (O. mykiss) immunized by Y. ruckeri bacterin. Turkish Journal of Veterinary and Animal Science, 25(4), 437-445.
  • Mata, T.M., Martins, A.A. & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Review, 14(1), 217-232.
  • Miranda, C.D., Godoy, F.A. & Lee, M.R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology, 9, 1284.
  • Özdemir, G., Dalay, M.C., Küçükakyüz, K., Pazarbaşı, B. & Yılmaz, M. (2001). Türkiye koşullarında ürerimi yapılan S. platensis’ in çeşitli ekstratlarının antimikrobiyol aktivite kapasitesinin belirlenmesi. Su Ürünleri Dergisi, 18(1), 161-166 (In Turkish).
  • Özdemir, G., Karabay, N.U., Dalay, M.C. & Pazarbaşı, B. (2004). Antibacterial activity of volatile component ve various extracts of S. platensis. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18, 754-757.
  • Romero, C., Abdallh, M.E., Powers, W, Angel, R. & Applegate, T.J. (2012). Effect of dietary adipic acid and corn dried distillers grains with solubles on laying hen performance and nitrogen loss from stored excreta with or without sodium bisulfate. Poultry Science, 91(5), 1149-1157.
  • Sastry, V.M.V.S. & Rao, G.R.K. (1994). Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Botanica marina, 37, 357-360.
  • Scheuer, P.J. (1990). Some marine ecological phenomena: chemical basis and biomedical potential. Science, 248, 173-177.
  • Sharifah, E.N. & Eguchi, M. (2011). The phytoplankton N. oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen V. anguillarum. PLoS One, 6(10): e26756.
  • Taniguchi, A., Sharifah, E.N. & Eguch, M. (2011). Possible role of microalga Nannochloropsis in controlling Vibrio species in fish larva rearing water. Aquaculture Science, 59(3), 451-458.
  • Tüney, İ., Çadırcı, B.H., Ünal, D. & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the Coast of Urla (İzmir, Turkey). Tübitak. 30, 171-175.
  • Vijayabaskar, P. & Vaseela, N. (2012). In vitro antioxidant properties of sulfated polysaccharide from brown marine algae S. tenerrimum. Asian Pacific Journal of Tropical Disease, 2, 890-896.
  • Walne, P.R. (1970). Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fisheries Investment. 26, 1¬62.
  • Yılmaz, H.K. (2006). The designs of photobioreactors for microalgae production. Ege University Journal of Fisheries and Aquatic Sciences, 23(1), 327-332.