This Article Statistics
Viewed : 88 Downloaded : 39


Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity

Berat Çınar Acar * , Zehranur Yüksekdağ


In this research, food (cheese, yoghurt) and animal (chicken) origin 39 Lactobacillus spp. and human origin (newborn faeces) three Bifidobacterium spp. were used. To designate the β-glycosidase enzyme and specific activities of the cultures, p-nitrophenyl-β-D glikopiranozit (p-NPG) was used as a substrate. The best specific activities between Lactobacilli cultures were observed at Lactobacillus rhamnosus BAZ78 (4.500 U/mg), L. rhamnosus SMP6-5 (2.670 U/mg), L. casei LB65 (3.000 U/mg) and L. casei LE4 (2.000 U/mg) strains. Bifidobacterium breve A28 (2.670 U/mg) and B. longum BASO15 (2.330 U/mg) strains belonging to the Bifidobacterium cultures had the highest specific activity capabilities. Optimization studies were performed to designate the impact of different pH, temperature, and carbon sources on the β-glucosidase enzyme of L. rhamnosus BAZ78 strain (β-Glu-BAZ78), which exhibits high specific activity. As optimum conditions, pH was detected as 7.5, the temperature as 30° C, and the carbon source as 2% glucose for the enzyme. Although the enzyme activity changed as the physiological conditions changed, the β-Glu-BAZ78 showed the highest specificity in the control groups.


Lactobacillus, Bifidobacterium, β-glycosidase enzyme activity, probiotic, optimization

Download full text   |   How to Cite   |   Download XML Files

  • Alvarez-Zúñiga, M.T., García, D.C., & Osorio, G. (2020). Effect of different carbon sources on the growth and enzyme production of a toxigenic and a non-toxigenic strain of Aspergillus flavus. Preparative Biochemistry & Biotechnology, 51(8), 769-779. https://doi.org/10.1080/10826068.2020.1858426.
  • Ariaeenejad, S., Nooshi-Nedamani, S., Rahban, M., K., Kavousi, Pirbalooti, A.G., Mirghaderi, S.S., Mohammadi, M., Mirzaei, M., & Salekdeh G.H. (2020). A Novel high glucose-tolerant β-Glucosidase: Targeted computational approach for metagenomic screening. Frontiers in Bioengineering and Biotechnology, 8, 813, https://doi.org/10.3389/fbioe.2020.00813.
  • Chen, A., Wang, D., Ji, R., Li, J., Gu, S., Tang, R., & Ji C. (2021). Structural and catalytic characterization of TsBGL, a β-Glucosidase from Thermofilum sp. ex4484_79. Frontiers in Microbiology, 12, 723678, https://doi.org/10.3389/fmicb.2021.723678.
  • Choi, Y.B., Kim, K.S., & Rhee, J.S. (2002). Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnology Letters, 24, 2113-2116. https://doi.org/10.1023/A:1021390120400.
  • Coulon, S., Chemarin, P., Gueguen, Y., Arnaud, A., & Galzy P. (1998). Purification and characterization of an intracellular beta-glucosidase from Lactobacillus casei ATCC 39. Applied Biochemistry and Biotechnology, 74 (2), 105-114. ISSN: 0273-2289.
  • Datta, R., Anand, S., Moulick, A., Baraniya, D., Pathan, S.I., Rejsek, K., Vranova, V., Sharma, M., Sharma, D., Kelkar, A., & Formanek P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31, 287-302. https://doi.org/10.1515/intag-2016-0049.
  • Dupont, A., Heinbockel, L., Brandenburg, K., & Hornef M.W. (2014). Antimicrobial peptides and the enteric mucus layer act in concert to protect the ıntestinal mucosa. Gut Microbes, 5(6), 761-765. https://doi.org/10.4161/19490976.2014.972238.
  • Esteve-Zarzoso, B., Manzaneres, P., Ramon, D., & Querol A. (1998). The role of non- saccharomyces yeasts in ındustrial winemaking. International Microbiology, 1(2), 143-148. https://doi.org/10.4061/2011/642460.
  • Gao, X., Zhang, M., Li, X., Han, Y., Wu, F., & Liu Y. (2018). The effects of feding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish & Shellfish Immunology. 78, 42-51. https://doi.org/10.1016/j.fsi.2018.04.010.
  • Garbacz K. (2022). Anticancer activity of lactic acid bacteria. Seminars in Cancer Biology. Seminars in Cancer Biology, 83, 3, 356-366. https://doi.org/10.1016/j.semcancer.2021.12.013
  • Grohmann, K., Manthey, J.A., Cameron, R.G., & Buslig, B.S. (1999). Purification of citrus peel juice and molasses. Journal of Agricultural and Food Chemistry, 47(12), 4859-4867. https://doi.org/10.1021/jf9903049.
  • Huang, R., Zhang, F., Yan, X., Qin, Y., Jiang, J., Liu, Y., & Song, Y. (2021). Characterization of the β-Glucosidase activity in indigenous yeast isolated from wine regions in China. Journal of Food Science, 86, 2327-2345. https://doi.org/0.1111/1750-3841.15741.
  • Kara, H.E., Sinan, S., & Turan, Y. (2011). Purification of beta-glucosidase from olive (Olea europaea L.) fruit tissue with specifically designed hydrophobic interaction chromatography and characterization of the purified enzyme. Journal of Chromatography B, 879 (19), 1507-1512. https://doi.org/10.1016/j.jchromb.2011.03.036.
  • Kılıç, Y., Yüksekdağ, Z.N., & Yüksekdağ, H. (2014). Beta-galactosidase enzyme activities of Lactobacillus ve Bifidobacterium genus. Journal of Food, 39(4), 1-8. https://doi.org/10.5505/gida.29491.
  • Koolman, J., & Roehm, K.H. (2005). Thieme Color Atlas of Biochemistry, 2nd Ed Thieme of Stuttgart, 209.
  • Kosmerl, E., Rocha-Mendoza, D., Ortega-Anaya, J., Jiménez-Flores, R., & García-Cano, I. (2021). Improving human health with milk fat globule membrane, lactic acid bacteria, and bifidobacteria. Microorganisms, 9(2), 341. https://doi.org/10.3390/microorganisms9020341.
  • Kumar, S., Pattanaik, A.K., Sharma, S. Jadhav, S.E., Dutta, N., & Kumar, A. (2017). Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and ıts ımpact on select gut health indices and immune response of dogs. Probiotics Antimicrob Proteins, https://doi.org/10.1007/s12602-017-9256-z.
  • Lenz, A.R., Balbinot, E., Oliveira, N.S., Abreu, F.P., Casa, P.L., Camassola, M., Perez-Rueda, E., Silva, S.A., & Dillon, A.J.P. (2022). Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: A genome-wide comparative study of the fungal lignocellulolytic system. Gene, 822, 146345. https://doi.org/https://doi.org/10.1016/j.gene.2022.146345.
  • Lu, C., Li, F., Yan, X., Mao, S., & Zhang, T. (2022). Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction. Food Chemistry, 378, 132032. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.132032.
  • Maldonado, J., Gil-Campos, M., Maldonado-Lobón, J.A., Benavides, M.R., Flores-Rojas, K., Jaldo, R., Jiménez del Barco, I., Bolívar, V., Valero, A.D., Prados, E., Peñalver, I., & Olivares, M. (2019). Evaluation of the safety, tolerance and efficacy of 1-year consumption of ınfant formula supplemented with Lactobacillus fermentum CECT5716 Lc40 or Bifidobacterium breve CECT7263: A randomized controlled trial. BMC Pediatric, 19, 361. https://doi.org/10.1186/s12887-019-1753-7.
  • Marazza, J.A., Garro, M.S., & Giori, G.S. (2009). Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiology, 26, 333-339. https://doi.org/10.1016/j.fm.2008.11.004.
  • Meng, F., Yang, S., Wang, X., Chen, T., Wang, X., Tang, X., Zhang, R., & Shen, L. (2017). Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. Journal of Infection and Public Health, 10(6), 749-754. https://doi.org/http://dx.doi.org/10.1016/j.jiph.2016.11.013.
  • Modrackova, N., Vlkova, E., Tejnecky, V., Schwab, C., & Neuzil‐Bunesova, V. (2020). Bifidobacterium β‐Glucosidase activity and fermentation of dietary plant glucosides are species and strain-specific. Microorganisms, 8, 839. https://doi.org/10.3390/microorganisms8060839.
  • Naidu, A.S., Bidlack, W.R., & Clemens, R.A. (1999). Probiotic spectra of lactic acid bacteria (LAB). Critical Reviews in Food Science and Nutrition, 39:1, 13-126. https://doi.org/10.1080/10408699991279187.
  • O’Callaghan, A., & van Sinderen D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2016.00925.
  • Pamuk, F. (2011). Biyokimya. Gazi Kitabevi, Ankara, Türkiye, 272s.
  • Pang, P., Cao, L-c., Liu, Y-h., Xie, W., & Wang, Z. (2017). Structures of a glucose-tolerant β-glucosidase provide insights into its mechanism. Journal of Structural Biology, 198(3), 154-162. http://dx.doi.org/10.1016/j.jsb.2017.02.001.
  • Seidel, Z.P., & Lee, T. (2020). Enhanced activity of the cellulase enzyme β‑Glucosidase upon addition of an azobenzene-based surfactant. ACS Sustainable Chemistry and Engineering, 8, 4, 1751-1761. https://doi.org/10.1021/acssuschemeng.9b05240.
  • Sener, A. (2015). Extraction, partial purification and determination of some biochemical properties of β–glucosidase from Tea Leaves (Camellia sinensis L.). Journal of Food Science and Technology, 52(12), 8322-8328. https://doi.org/10.1007/s13197-015-1915-z.
  • Sestelo, A.B.F., Poza, M., Viilla T.G. (2004). β-Glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology & Biotechnology, 20, 633-637.
  • Singh, G., Verma, A.K., & Kumar, V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotechnology, 6:3. https:/doi.org/10.1007/s13205-015-0328-z.
  • Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technology. 127(1), 500-7. https://doi.org/10.1016/j.biortech.2012.09.012.
  • Strahsburger, E., Lacey, M.L.L., Marotti, I., DiGioia, D., Biavati, B., & Dinelli, G. (2017). In vivo assay to identify bacteria with β-glucosidase activity. Electronic Journal of Biotechnology, 30, 83-87. https://doi.org/10.1016/j.ejbt.2017.08.010.
  • Tamaki, F.K., Souza, D.P., Souza, V.P., Ikegami, C.M., Farah, C.S., & Marana, S.R. (2016). Using the amino acid network to modulate the hydrolytic activity of β-Glycosidases. PLoS One, 11(12). http://doi.org/10.1371/journal.pone.0167978.
  • Temizkan, G., Yılmazer, S., Öztürk, M., Arı, Ş., Ertan, H., Sarıkaya, A.T., & Arda, N. (2008). Moleküler Biyolojide Kullanılan Yöntemler. İstanbul Üniversitesi Biyoteknoloji ve Genetik Mühendisliği Araştırma ve Uygulama Merkezi (Biyogem) Yayın, Nobel Tıp Kitapevleri, 345s.
  • Teugjas, H., & Väljamäe, P. (2013). Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels and Bioproducts, 6, 105. https://doi.org/ http://www.biotechnologyforbiofuels.com/content/6/1/105.
  • Tsangalis, D., Ashton, J.F., Mcgill, A.E.J., & Shah, N.P. (2002). Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase producing bifidobacteria. Journal of Food Science, 67, 8, 3104-3113. https://doi.org/10.1111/j.1365-2621.2002.tb08866.x.
  • Yüksekdag, Z., Cinar Acar, B., Aslim, B., & Tukenmez, U. (2018). β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. International Journal of Food Properties, 20, S3. S2878-2886. https://doi.org/10.1080/10942912.2017.1382506.
  • Yüksekdag, H., & Yuksekdag, Z. (2021). Beta-galactosidase activity in Lactobacillus delbrueckii subsp. bulgaricus ZN541 and Streptococcus thermophilus Z1052 strains and optimization. The Journal of Food, 46(6), 1331-1342. https://doi.org/10.15237/gida.GD21059.
  • Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnology Biofuels, 11:51. https://doi.org/10.1186/s13068-018-1045-8.
  • Zhu, L., Mu, T., Ma, M., Sun, H., & Zhao, G. (2022). Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chemistry, 374, 131500. https://doi.org/10.1016/j.foodchem.2021.131500.