This Article Statistics
Viewed : 67 Downloaded : 41


The Genotoxic Damage in Cyprinus carpio Exposed to Abamectin

Funda Turan*, Ayşegül Ergenler

DOI: 10.28978/nesciences.1338147


The pesticide abamectin, which is often used in agriculture, poses a threat to aquatic animals. Though its toxicity to fish has not yet been fully understood. In this study, we used the comet assay to examine the effects of being subjected to various dosages of abamectin on the genotoxic impact of abamectin in Cyprinus carpio. During 10 days, common carp were exposed to three different doses of abamectin (0.3, 0.6, and 0.9 mg L-1) based on previously discovered levels in aquatic environments. Toward the completion of the investigation, the Comet assay was used to assess the damage frequency (%), Arbitrary unit (%), and Genetic damage index (%) in carp gill and liver cells. The greatest damage frequencies of % 74.333±0.577 and % 70.333±2.082 were significantly found in the 0.9 mg L-1 group in the gill and liver cells, respectively (P<0.001). Our results showed a considerable increase in DNA strand breaks in C. carpio after exposure to abamectin, suggesting the pesticide's capacity to be genotoxic to fish.


Abamectin, DNA damage, pesticide, comet assay

Download full text   |   How to Cite   |   Download XML Files

  • Alexandratos, N. & J. Bruinsma, (2012). World Agriculture towards 2030/2050: the 2012 Revision. https://doi.org/10.22004/ag.econ.288998.
  • Bai, S. H., & Ogbourne, S. (2016). Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154, 204-214. https://doi.org/ 10.1016/j.chemosphere.2016.03.113.
  • Agin, K., Hassanian-Moghaddam, H., Shadnia, S., & Rahimi, H. R. (2016). Characteristic manifestations of acute paint thinner-intoxicated children. Environmental toxicology and pharmacology, 45, 15-19. https://doi.org/ 10.1016/j.etap.2020.103370.
  • Bonomo, M. M., de Castro Sachi, I. T., Paulino, M. G., Fernandes, J. B., Carlos, R. M., & Fernandes, M. N. (2021). Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish. Environmental Pollution, 268, 115758. https://doi.org/10.1016/j.envpol.2020.115758.
  • Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.108.
  • Cavalcante, D. G. S. M., Martinez, C. B. R., & Sofia, S. H. (2008). Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 655(1-2), 41-46. https://doi.org/10.1016/j.mrgentox.2008.06.010.
  • Chen, L. J., Sun, B. H., ping Qu, J., Xu, S., & Li, S. (2013). Avermectin induced inflammation damage in king pigeon brain. Chemosphere, 93(10), 2528-2534. https://doi.org/10.1016/j.chemosphere.2013.09.058.
  • Collins, A. R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Molecular biotechnology, 26(3), 249-261. https://doi.org/10.1385/MB:26:3:249.
  • Dos Santos, K. P. E., Silva, I. F., Mano-Sousa, B. J., Duarte-Almeida, J. M., de Castro, W. V., de Azambuja Ribeiro, R. I. M., ... & Thomé, R. G. (2023). Abamectin promotes behavior changes and liver injury in zebrafish. Chemosphere, 311, 136941. https://doi.org/10.1016/j.chemosphere.2022.136941.
  • Feng, H., Zhou, P., Liu, F., Zhang, W., Yang, H., Li, X., & Dong, J. (2023). Abamectin causes toxicity to the carp respiratory system by triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy. Environmental Science and Pollution Research, 30(19), 55200-55213. https://doi.org/10.1007/s11356-023-26166-3.
  • Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103-118. https://doi.org/10.1007/s11356-014-3180-5.
  • Muranli, F. D. G., Rasgele, P. G., Kekecoglu, M., Kanev, M., & Ozdemir, K. (2015). Potential genotoxicity of acetamiprid and propineb singly or in combination in cultured human peripheral blood lymphocytes by using MN assay. Fresenius Environmental Bulletin, 24(11), 3947-3955.
  • Hayat, K., Afzal, M., Aqueel, M. A., Ali, S., Khan, Q. M., & Ashfaq, U. (2018). Determination of insecticide residues and their adverse effects on blood profile of occupationally exposed individuals. Ecotoxicology and Environmental Safety, 163, 382-390. https://doi.org/10.1016/j.ecoenv.2018.07.004.
  • Hong, Y., Huang, Y., & Huang, Z. (2020). Oxidative stress, immunological response, and heat shock proteins induction in the Chinese Mitten Crab, Eriocheir sinensis following avermectin exposure. Environmental Toxicology, 35(2), 213-222. https://doi.org/10.1002/tox.22858.
  • Jasmine, R. S., Kuttalam, S., & Stanley, J. (2008). Acute toxicity of abamectin to fishes, Cyprinus carpio Linnaeus and Tilapia mosambica (Peters). Asian Journal of Bio Science, 3(1), 127-129.
  • Li, B., Xia, X., Wang, J., Zhu, L., Wang, J., & Wang, G. (2018). Evaluation of acetamiprid-induced genotoxic and oxidative responses in Eisenia fetida. Ecotoxicology and Environmental Safety, 161, 610-615. https://doi.org/10.1016/j.ecoenv.2018.06.022.
  • Li, M. Y., Gao, C. S., Du, X. Y., Zhao, L., Niu, X. T., Wang, G. Q., & Zhang, D. M. (2020). Effect of sub-chronic exposure to selenium and astaxanthin on Channa argus: Bioaccumulation, oxidative stress and inflammatory response. Chemosphere, 244, 125546. https://doi.org/10.1016/j.chemosphere.2019.125546.
  • Liang, Y., Li, J., Lin, Q., Huang, P., Zhang, L., Wu, W., & Ma, Y. (2017). Research progress on signaling pathway-associated oxidative stress in endothelial cells. Oxidative Medicine and Cellular Longevity, 2017:7156941. https://doi.org/10.1155/2017/7156941.
  • Liao, W., McNutt, M. A., & Zhu, W. G. (2009). The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods, 48(1), 46-53. https://doi.org/10.1016/j.ymeth.2009.02.016.
  • Liu, M., Panda, S. K., & Luyten, W. (2020). Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules, 10(3), 426. https://doi.org/10.3390/biom10030426.
  • Lumaret, J. P., Errouissi, F., Floate, K., Rombke, J., & Wardhaugh, K. (2012). A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Current Pharmaceutical Biotechnology, 13(6), 1004-1060. https://doi.org/ 10.2174/138920112800399257.
  • McCavera, S., Walsh, T. K., & Wolstenholme, A. J. (2007). Nematode ligand-gated chloride channels: an appraisal of their involvement in macrocyclic lactone resistance and prospects for developing molecular markers. Parasitology, 134(8), 1111-1121. https://doi.org/10.1017/S0031182007000042.
  • Norusis M.J., 1993. Advanced Statistics, SPSS for Windows, Release 6.0, p. 578
  • Novelli, A., Vieira, B. H., Cordeiro, D., Cappelini, L. T. D., Vieira, E. M., & Espíndola, E. L. G. (2012). Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere, 86(1), 36-40. https://doi.org/10.1016/j.chemosphere.2011.08.047.
  • Novelli, A., Vieira, B. H., Braun, A. S., Mendes, L. B., Daam, M. A., & Espíndola, E. L. G. (2016). Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere, 144, 1408-1414. https://doi.org/10.1016/j.chemosphere.2015.10.004.
  • OECD (1992). Organisation for Economic Co-operation and Development. OECD´s guidelines for the testing of chemicals: 203 acute toxicity test for fish. p.12, Paris, OECD Publishing
  • Pitarque, M., Creus, A., Marcos, R., Hughes, J. A., & Anderson, D. (1999). Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personnel. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 440(2), 195-204. https://doi.org/10.1016/S1383-5718(99)00026-1.
  • Pitterna, T., Cassayre, J., Hüter, O. F., Jung, P. M., Maienfisch, P., Kessabi, F. M., ... & Tobler, H. (2009). New ventures in the chemistry of avermectins. Bioorganic & Medicinal Chemistry, 17(12), 4085-4095. https://doi.org/10.1016/j.bmc.2008.12.069.
  • Prasse, C., Löffler, D., & Ternes, T. A. (2009). Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. Chemosphere, 77(10), 1321-1325. https://doi.org/10.1016/j.chemosphere.2009.09.045.
  • Prichard, R., Ménez, C., & Lespine, A. (2012). Moxidectin and the avermectins: consanguinity but not identity. International Journal for Parasitology: Drugs and Drug Resistance, 2, 134-153. https://doi.org/10.1016/j.ijpddr.2012.04.001.
  • Prusty, J. K., & Patro, S. K. (2015). Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate–A review. Construction and Building Materials, 82, 101-113. https://doi.org/10.1016/j.conbuildmat.2015.02.063.
  • Rejczak, T., & Tuzimski, T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry, 13(1), 980-1010. https://doi.org/10.1515/chem-2015-0109.
  • Sanches, A. L. M., Vieira, B. H., Reghini, M. V., Moreira, R. A., Freitas, E. C., Espíndola, E. L., & Daam, M. A. (2017). Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio). Chemosphere, 188, 582-587.
  • Sánchez-Alarcón, J., Milić, M., Kašuba, V., Tenorio-Arvide, M. G., Montiel-González, J. M. R., Bonassi, S., & Valencia-Quintana, R. (2021). A systematic review of studies on genotoxicity and related biomarkers in populations exposed to pesticides in Mexico. Toxics, 9(11), 272.
  • Sumudumali, R. G. I., & Jayawardana, J. M. C. K. (2021). A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environmental Management, 67(2), 263-276. https://doi.org/10.1007/s00267-020-01423-0.
  • Tišler, T., & Kožuh Eržen, N. (2006). Abamectin in the aquatic environment. Ecotoxicology, 15, 495-502. https://doi.org/10.1007/s10646-006-0085-1.
  • Tresnakova, N., Kubec, J., Stara, A., Zuskova, E., Faggio, C., Kouba, A., & Velisek, J. (2022). Chronic toxicity of primary metabolites of chloroacetamide and glyphosate to early life stages of marbled crayfish Procambarus virginalis. Biology, 11(6), 927. https:// doi.org/10.3390/biology11060927.
  • Turan, F., & Ergenler, A. (2019). Assessment of DNA damage by comet assay in Trachinotus ovatus cells from Mersin Bay in the Northeastern Mediterranean. Natural and Engineering Sciences, 4(3), 25-31.
  • Turan, F., & Ergenler, A. (2022). Investigation of the genotoxic effect of acetamiprid in Cyprinus carpio using the micronucleus analysis and the comet assay. Turkish Journal of Maritime and Marine Sciences, 8(2), 80-89. https://doi.org/10.52998/trjmms.1037906.
  • Valencia-Quintana, R., Milić, M., Bonassi, S., Ochoa-Ocaña, M. A., Campos-Peña, V., Tenorio-Arvide, M. G., ... & Sánchez-Alarcón, J. (2023). Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico. Toxics, 11(2), 122. https://doi.org/10.3390/toxics11020122.
  • Yanar, M., & Genç, E. (2004). Anaesthetic effects of quinaldine sulphate together with the use of diazepam on Oreochromis niloticus L. 1758 (Cichlidae) at different temperatures. Turkish Journal of Veterinary & Animal Sciences, 28(6), 1001-1005.
  • Yu, M., Yao, J., Liang, J., Zeng, Z., Cui, B., Zhao, X., ... & Cui, H. (2017). Development of functionalized abamectin poly (lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC advances, 7(19), 11271-11280. https://doi.org/10.1039/C6RA27345A.