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Abstract 

In this paper, we prove a common fixed point theorem for two pairs of weakly compatible 

mappings satisfying a generalized condition in metric spaces and we present an example 

which illustrates our results. 
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Introduction 

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated 

Banach's fixed point theorem. This theorem provides a technique for solving a variety of 

applied problems in mathematical sciences and engineering. In the study of functional 

analysis and topology, metric spaces play very important role and gained considerable 

importance after the famous Banach Contraction Principle. 

In recent years, many fixed point theorems have appeared in the literature using the notion of 

compatibility by various authors. Sessa [9] generalized the concept of commutative mappings 

by introducing the concept of weakly commutative mappings. Jungck [1] generalized the 

concept of weak commutativity by introducing the concept of compatible mappings. Jungck 

and al [2] generalized the concept of compatibility by introducing the concept of compatible 

mappings of type (A). Pathak et al [5,6,8] generalized the concept of compatibility of type (A) 

by introducing the concept of compatibility of type (B), the concept of compatibility of 

type(P) and the concept of compatibility of type (C). It was shown in [2,5,6,8] that these 

notions are equivalent if the mappings are continuous. In [3], Jungck introduced the concept 

of weakly compatibility mappings. It was shown in [1,2,5,6,8] that each of these concepts of 

compatibility implies weakly compatibility, but the converse is not true in general. In other 

words the weakly compatibility is the lowest among all cited notion compatibility. In the 

following of this section S and T denote two mappings of a metric space (X,d) into itself. 

    S and T are said to be commutative if STx=TSx for any x∈X. 
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Materials and Methods 

1.1. Definition 1.1  ([5]). S and T are said to be weakly compatible if they commute at 

coincidence points, i.e., if St = Tt for t ∈ X, then STt = TSt. 

Definition 1.2   ([1]). S and T are said to be compatible if 

(1.2)                     lim() = 0

!1 

whenever fg is a sequence in satisfying 

(1.3)                     lim= lim= for a certain 2  

!1            !1 
It is easy to show that weakly commutativity implies compatibility, but the converse 

not be true in general as it proved in [4]. 

Definition 1.3   ([3]). and are said to be weakly compatible if they commute at 

coincidence points, i.e., if = for 2 , then = . 
The purpose of this paper is to present a common .xed point result for four 

mappings which satisfy larger generalized ()bcontractive condition in metric 

spaces. For this aim we need the following definitions: 

Definition 1.4    Let () be a metric space and a nonempty subset of and 

: ! a mappings satisfying: 

() ≤ maxf1/2()()()g 

                +f() + ()g  

for any 2 and 6= ≥ 0 such that + 21Then () is said a generalized 

() contraction in . 

Theorem 1.5.   
Let (X,d) be an complete metric space. Let A,B,S and T be self maps on X satisfying the 
following conditions: 
 A(X)⊂T(X) et B(X)⊂S(X)               #2.1 
 
[1 + pd(Sx; Ty)]d(Ax,By)  ≤ pmax{d(Sx; Ax)d(Ty; By); d(Sx; By)d(Ty; Ax)}     #2.2 
                                              + [δmax d(Sx,Ty),d(Sx,Ax),d(Ty,By 
   +((d(Sx,By)+d(Ty,Ax))/2)}+(1-δ)max{d(Ax,Sx), 
   d(By,Ty)}]+Lmin{d(Sx,Ax),d(Ty,By), 
   d(Sx,By),d(Ty,Ax)}, 

for any 2 , where 0 10 1, 0, ≥ 0 and : [01) ! [01) is a upper 

semicontinuous function  with (t) = 0 if and only if t = 0 

(b): for all 0() 0 if and only if lim
() = 0. Suppose that () 

!1 

or () is complete and the pairs () and () are weakly compatible, then 

and have a unique common fixed point in . 

 

Proof.  Let x0 an arbitrary point in X. From (2.1), there exist a point x1∈X such 

that Ax0 = Tx1: for this point x1, we can choose a point x2 such that Bx1 = Sx2: 

Inductively, we can define a sequence {yn} in X such that 

y2n=Ax2n=Tx2n+1 and y2n+1=Sx2n+2=Bx2n+1, n∈N:                                                #(2.3) 

Now, we will show that the sequence {yn} defined above is a Cauchy sequence in 

X. First suppose that yn ≠yn+1 for any n. we use (2.2) and (2.3) . Let us denote 

(yn, yn+1) by n, for each n = 0;1;2... First we will show that α n+1≤(α n) and 

then we claim that  
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 limαn=0            such that !1                                                                     #2.4 
and then show that {yn} is a Cauchy sequence in X. For this, putting x=x2n+2 and y=x2n+1 in 

(2.2) we obtain 

[1+pα2n]α2n+1}≤pmax{α2n+1α2n,0}+ϕ(δmax{α2n,α2n+1,α2n,(1/2)α(y2n,y2n+2)}+(1-δ)max{α2n+1,α2n 

}) 

But, from the triangle inequality for metric α, we have 

(1/2)α(y2n,y2n+2)≤ (1/2)[ α(y2n,y2n+2)+α(y2n+1,y2n+2)]=(1/2)(α2n,α2n+1) 

  ≤ max{α2n,α2n+1}. 

Using this in above, we get 

[1+pαn]α2n+1≤pmax{α2n+1α2n}+ϕ(δmax{α2nα2n+1}+(1-δ)max{α2n+1,α2n})). 

If we choose α2n+1 as "max" in above then we obtain 

α2n+1≤ϕ(α2n+1)<α2n+1, 

a contradiction. Hence, 

α2n+1≤ϕ(α2n).                                                                                                                         #2.5 

Similarly, by setting x2n+2 for x and x2n+3 for y in (2.2) we have 

[1+pα2n+1]α2n+2≤pmax{α2n+1α2n+2,0}+ϕ(max{α2n+1,α2n+1,α2n+2,(1/2)α(y2n+1,y2n+3)}),  

i.e., 

α2n+2≤ϕ(max{α2n+1,α2n+1,α2n+2,(1/2)α(y2n+1,y2n+3)})=ϕ(α2n+1), 

hence 

α2n+2≤ϕ(α2n+1).                                                                                                                      #2.6 

Unifying (2.5) and (2.6) we obtain 

αn+1≤ϕ(αn), 

which implies that 

αn≤ϕ(αn-1)≤ϕ²(αn-2)≤...≤ϕⁿ(α₀), 

and by condition (a) and (b) in theorem (2.1) since limϕⁿ(α₀)=0 if α₀=0, we have 

limαn=0, such that !1 
thus {yn} is a Cauchy sequence and since X is complete, there exists a point z in X such that 

limyn = z. The sequence {y2n+1}={Sx2n+2}⊂S(X) is a Cauchy sequence in S(X). Suppose that 

S(X) is complete. Then it converges to a point z=Su for u∈X. Therefore, the subsequences 

{Ax2n}, {Bx2n+1}, {Tx2n+1} also converge to z. If Au≠z, using (2.2) we get 

[1+d(Su,Tx2n+1)]d(Au,Bx2n+1)  ≤ pmax{d(Su,Au)d(Tx2n+1,Bx2n+1),d(Bx2n+1,Su)d(Au,Tx2n+1)} 

   +ϕ[δmax{d(Su,Tx2n+1),d(Su,Au),d(Tx2n+1,Bx2n+1), 

   ((d(Su,Bx2n+1)+d(Tx2n+1,Au))/2)}+(1-δ)max{d(Au,Su), 
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   d(Tx2n+1,Bx2n+1)}]+Lmin{d(Su,Tx2n+1)d(Su,Au),d(Tx2n+1,Bx2n+1), 

   d(Su,Bx2n+1),d(Tx2n+1,Au)}. 

Letting n→∞ we obtain 

d(Au,z)  ≤ ϕ[δd(Au,z)+(1-δ)d(Au,z)] 

  < d(Au,z), 

which is impossible. Hence, z=Au=Su. Since A(X)⊂T(X), there exists v∈X such that z=Tv. If 

z≠Bv, Applying (2.2) we have 

[1+d(Su,Tv)]d(Au,Bv)  ≤ pmax{d(Su,Au)d(Tv,Bv),d(Bv,Su)d(Au,Tv)} 

   +ϕ[δmax{d(Su,Tv),d(Su,Au),d(Tv,Bv), 

   ((d(Su,Bv)+d(Tv,Au))/2)}+(1-δ)max{d(Au,Su),d(Tv,Bv)}] 

   +Lmin{d(Su,Tv),d(Su,Au),d(Tv,Bv),d(Su,Bv),d(Tv,Au)}. 

Then 

d(z,Bv)  ≤ ϕ[δd(z,Bv)+(1-δ)d(z,Bv)] 

  < d(z,Bv), 

which is impossible. Therefore, z=Bv=Tv. As (A,S) is weakly compatible, we find SAu=ASu, 

i.e., Az=Sz. If Az≠z, using (2.2) we get 

[1+d(Sz,Tv)]d(Az,Bv)  ≤ pmax{d(Sz,Az)d(Tv,Bv),d(Bv,Sz)d(Az,Tv)} 

   +ϕ[δmax{d(Sz,Tv),d(Sz,Az),d(Tv,Bv), 

   ((d(Sz,Bv)+d(Tv,Az))/2)}+(1-δ)max{d(Az,Sz),d(Tv,Bv)}] 

   +Lmin{d(Sz,Tv),d(Sz,Az),d(Tv,Bv),d(Sz,Bv),d(Tv,Az)}, 

then 

d(z,Az)  ≤ ϕ[δd(Az,z)+(1-δ)d(Az,z)] 

  < d(z,Az), 

which is impossible. So, z=Az=Sz. Similarly, we can prove that z=Bz=Tz. Assume there 

exists n such that y_{n}=y_{n+1}. By induction, y_{n}=y_{n+k} for k≥1. Thus, there exists 

u,v∈X such that Au=Su et Bv=Tv. We can prove that z=Az=Sz=Bz=Tz. For the uniqueness 

of z, suppose that w is another common fixed point of A,B,S and T. Applying (2.2) we ob tain 

d(Az,Bw)  = d(z,w) ≤ ϕδd(z,w)<d(z,w), 

which is impossible. Hence, z=w. Then, A,B,S and T have a unique common fixed point in X. 
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Results and Discussion 

 

Example 

Let A,B,S and T be four self-mappings of a metric space X, endowed with the usual metric 

d. Let X=[0,3/2]. Define the mappings A,B,S and T:X→X by: 

 

 

 Ax=1,Sx=x,Bx=1 and Tx=1/2(1+x);∀x∈X. 

 

    Let ϕ:[0;1)→ℝ be defined by ϕ(t)=t/2 . Then we observe that: 

    (a) AX={1}⊆TX=[1/2,5/4]⊆X and BX={1}⊆SX=[0,3/2]⊆X, 

    (b) Since, d(Ax,By)=0, d(Sx,Ty)=1/2|2x-y-1|,d(Ax,Sx)=|1-x|,d(By,Ty)=|1-y|=d(Ax,Ty) 

    and d(By,Sx)=|1-x|,∀x,y∈X, we have for condition (2.2) 

 

that 

 

 [1+pd(Sx,Ty)]d(Ax,By)  ≤ pmax{d(Sx,Ax)d(Ty,By),d(Sx,By)d(Ty,Ax)} 

   +ϕ[δmax{d(Sx,Ty),d(Sx,Ax),d(Ty,By), 

   ((d(Sx,By)+d(Ty,Ax))/2)}+(1-δ)max{d(Ax,Sx),d(By,Ty)}] 

   +Lmin{d(Sx,Ty),d(Sx,Ax),d(Ty,By),d(Sx,By),d(Ty,Ax)}, 

 

or 

 

 0  ≤ p/2|1-x||1-y|+ϕ[δmax{1/2|2x-y-1|,|1-x|,|1-y|, 

   ((|1-x|+|1-y|)/2)}+(1-δ)max{|1-x|,|1-y|}] 

   +Lmin{1/2|2x-y-1|,|1-x|,|1-y|,|1-x|,|1-y|}, 

 

where the socend membre is positif. Thus condition (2.2) is true for all ∀x,y∈X and 

p≥0.Further, we see that 

 

 M(x,y)=δmax{1/2|2x-y-1|,|1-x|,|1-y|,((|1-x|+|1-y|)/2)}+(1-δ)max{|1-x|,|1-y|}=0, 

 

if and only if, 

 

 1/2|2x-y-1|=|1-x|=|1-y|=((|1-x|+|1-y|)/2)=0, 

 

i.e., x=1,y=1. Thus M(1,1)=0 and therefore ϕ(0)=0.We notice that the pairs (A,S) and (B,T) 

have the coincidence point x=1 where they commutes. So that (A,S) and (B,T) are weakly 

compatible. Thus all 

    the conditions of Theorem 2.1 are satisfied. Hence x=1 is the unique common fixed 

point of A,B,S and T 
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Conclusion 

 

    If B=A and T=S  in the Theorem 2.1, we get the following corollary. 

    Corollary 2.2. Let A and S be two mappings of a metric space (X,d) into itself 

satisfying 

A(X)⊂S(X) 

[1+pd(Sx,Sy)]d(Ax,Ay)  ≤ pmax{d(Sx,Ax)d(Sy,Ay),d(Sx,Ay)d(Sy,Ax)}          #2.7 

   +ϕ[δmax d(Sx,Sy),d(Sx,Ax),d(Sy,Ay), 

   ((d(Sx,Ay)+d(Sy,Ax))/2)}+(1-δ)max{d(Ax,Sx),d(Ay,Sy)}] 

   +Lmin{d(Sx,Sy),d(Sx,Ax),d(Sy,Ay),d(Sx,Ay),d(Sy,Ax)}. 

 

for any x,y∈X, where 0<δ≤1, L≥0 and 

    (a) ϕ : [0, ∞) → [0, ∞) is a upper semicontinuous function with ϕ(t)=0 if and only if t=0, 

    (b) for all t>0,ϕ(t)<0 if and only if limϕⁿ(t)=0 Suppose that S(X) is complete and (A,S) is 

weakly compatible. Then, A and S have a unique common fixed point in X. 

    If S =IX in the corollary 2.2, where IX is identity mapping in X, then we obtain the 

following corollary. 

    Corollary 2.3. Let A a mapping of a Banach space (X,d) into itself satisfying 

 

 [1+pd(x,y)]d(Ax,Ay)  ≤ pmax{d(x,Ax)d(y,Ay),d(x,Ay)d(y,Ax)}                #2.8 

   +ϕ[δmax d(x,y),d(x,Ax),d(y,Ay), 

   ((d(x,Ay)+d(y,Ax))/2)}+(1-δ)max{d(Ax,x),d(Ay,y)}] 

   +Lmin{d(x,y),d(x,Ax),d(y,Ay),d(x,Ay),d(y,Ax)}. 

 

for any x,y∈X, where 0<δ≤1, and L≥0 and  

    (a) ϕ : [0, ∞) → [0, ∞) is a upper semicontinuous function with ϕ(t)=0 if and only if t=0, 

    (b) for all t>0,ϕ(t)<0 if and only if limϕⁿ(t)=0 Then, A has a unique fixed point in X. 
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