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Abstract 

Integrated communication networks (CN) have proven successful in tracking environmental activities, 

wherein several sensors are installed throughout diverse surroundings to gather data or observe certain events. 

CNs, comprising several interacting detectors, have proven effective in various applications by transmitting 

data via diverse transmission methods inside the communication system. The erratic and constantly changing 

surroundings necessitate conventional CNs to engage in frequent conversations to disseminate the latest data, 

potentially incurring substantial connection expenses through joint data gathering and dissemination. 

High-frequency communications are prone to failure due to the extensive distance of data transfer. This 

research presents a unique methodology for multi-sensor environmental monitoring networks utilizing 
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autonomous systems. The transmission system can mitigate elevated communication costs and Single Point of 

Failing (SPOF) challenges by employing a decentralized method that facilitates in-network processing. The 

methodology employs Boolean systems, enabling a straightforward verification process while preserving 

essential details about the dynamics of the communication system. The methodology further simplifies the data 

collection process and employs a Reinforcement Learning (RL) technique to forecast future events inside the 

surroundings by recognizing patterns. 
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Introduction 

Using communication networks (CN) to acquire environmental data has garnered significant interest from 

computer science academics in recent years (Bai et al., 2020). Environmental surveillance encompasses the 

procedures necessary to assess the status of the environment regarding air and water quality, soil temperatures, 

and other variables (Liu et al., 2021). The objectives of employing CNs are categorized into two types: data on 

the environment acquisition or specific event surveillance. The current and prospective uses in environmental 

information collecting encompass species in danger conservation, zoological research, pollution assessment, 

maritime surveillance, etc. 

Researchers typically blend many sensor types to acquire diverse information about the environment 

(Li et al., 2023). Numerous current applications utilize various sensors inside the network to track specific 

events, including hallway surveillance, intruder identification, forest fire identification, and forecasting 

floods. In event tracking, scientists gather data that examines environmental data utilizing a single sort of 

sensor. In CNs, every device is often denoted as a node, capable of communicating with a base station that 

stores and analyzes all data (Bansal & Kumar, 2020). 

The effectiveness of such uses is mainly due to the sensor network's communications capability for 

tracking the extensive environment, given the inherent difficulties of the activities involved (Escher et al., 

2020). Observing the intricate and dynamic large-scale surroundings necessitates a considerable number of 

detectors. CN can efficiently produce extensive and multidimensional information these sensors gather via 

continual environmental surveillance tasks. Unstructured environmental information poses significant 

challenges for analysis and pattern recognition (Liu et al., 2022). The CN has issues with the transmission of 

information failures. 

The malfunction of the central station might immediately fail the ecological surveillance mission, 

rendering the remainder of the system ineffective. As the quantity of CN nodes in the system significantly 

rises, the communication volume inside the network will similarly escalate (Rao et al., 2023). This study 
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proposes the development of CNs for the ecosystem and the environment, utilizing concepts from dynamical 

systems, wherein each node gathers and stores data. The research uses a Boolean system, a specific dynamical 

structure, to represent information flow and aggregation throughout the monitoring task, employing a 

straightforward Boolean rule (Jiménez‐Hernández et al., 2020). The study specifically focuses on modeling 

the interactions among the instruments and examines the dynamics generated by these interactions throughout 

an environmental surveillance assignment. 

The research experiments in an artificial setting to examine the scalability of coverage of areas and 

resilience to network failures. The experiment's findings demonstrate that the approach can address these 

constraints, mainly using Reinforcement Learning (RL) techniques at every node. The research performs 

simulations to prove that the sensors can achieve consensus on an event. The concept is advantageous when 

utilizing error-prone detectors, which are prevalent and cost-effective, making them appealing for extensive 

CNs.  

Real-time Data Transmission Algorithm  

Q-Learning (QL) algorithm is an off-policy TD control algorithm, the most widely used algorithm among 

several RL methods, and an essential breakthrough in RL (Maoudj & Hentout, 2020). 

• System Model 

In CNs, a network with a known topology comprises M sensor nodes and one base station (BS), where the BS 

is the data receiving center, and the rest are sensor nodes (Chang et al., 2020). These nodes periodically 

generate data with different deadlines, which are transmitted between multiple nodes and sent to the BS in time 

slots. 

The Q-learning model is adopted to determine the transmission nodes for each time slot for data 

transmission scheduling. This model consists of four elements: state space S (set of all data states), action 

space A (set of transmitted actions), learning strategy (time slot allocation strategy), and reward R (immediate 

feedback on action execution effectiveness). 

The Deep Q-network (DQN) model achieves supervised learning through a dual Q-network 

architecture and experience pool technology (Turgut & Bozdag et al., 2020). Two networks have the same 

structure but different parameters, one for real-time Q-value prediction and the other for stable target Q-value 

updates to reduce correlation and improve algorithm stability. The experience pool collects state transition 

samples, trains the network using stochastic gradient descent (SGD), and reduces the correlation between data 

by covering old data. 
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• Optimal Action Selection Strategy 

Deep Neural Networks (DNN) achieve compact representations of complex functions through multiple hidden 

layers, where each layer undergoes nonlinear transformations. A stacked autoencoder (SAE) DNN comprises 

multiple layers of sparse autoencoder network, using unsupervised pre-training combined with a supervised 

fine-tuning training method (Tang et al., 2020). In the unsupervised stage, the researcher learns hidden features 

layer by layer. During the fine-tuning phase, the network is optimized based on pre-trained parameters. 

This algorithm utilizes a multi-layer SAE model to map system state to behavior and quickly obtain 

optimal decisions. The input layer of the model contains the status information (node data status, remaining 

hops, deadline), and the output layer evaluates the urgency of each node data and determines the transmission 

order. The number of hidden layer neurons is related to the number of nodes, and nonlinear activation 

functions (such as Recurrent Learning Unit (ReLU), sigmoid, and tanh) are used to process the input. 

• State-Behavior Mapping Network 

DNN achieves compact representations of complex functions through multiple hidden layers, where each layer 

undergoes nonlinear transformations. A SAE-DNN comprises multiple layers of sparse autoencoder network, 

using unsupervised pre-training combined with a supervised fine-tuning training method (Prottasha et al., 

2022). In the unsupervised stage, the researcher learns hidden features layer by layer. During the fine-tuning 

phase, the network is optimized based on pre-trained parameters. 

This algorithm utilizes a multi-layer SAE model to map system state to behavior, quickly obtaining 

the optimal decision. The model structure is shown in Figure 1. The input layer of the model contains the 

status information (node data status, remaining hops, deadline), and the output layer evaluates the urgency of 

each node data and determines the transmission order. The number of hidden layer neurons is related to the 

number of nodes, and nonlinear activation functions (such as ReLU, sigmoid, tanh) are used to process the 

input. 

 

Figure 1. SAE model structure 
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• Fusion of DQN Algorithm and Q-Learning 

The DQN algorithm is designed for scenarios considering communication constraints, interference, remaining 

deadlines, and hop count changes. It utilizes DNNs to evaluate state action mapping and optimizes it through 

Q-learning and experience replay (Zhao et al., 2020). The algorithm first constructs a communication 

interference model to determine the concurrent node set. The DQN scheduling algorithm flow is shown in 

Figure 2. In the initial stage, Q learns to collect state transition information and store it in the experience pool 

without training the SAE network. After completing the experience pool, combine DQN supervision to train 

SAE and optimize data transmission scheduling to reduce packet loss. The algorithm process includes 

experience pool accumulation, SAE network training, state action recommendation, and Q-value update until 

the training objectives are achieved. Finally, the trained SAE network will be utilized for data transmission 

scheduling. 

 

Figure 2. DQN scheduling algorithm 
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challenge of simultaneous transmission of several data streams. Through the examination of development 
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pre-swarming colony activities (Hong et al., 2020). They devised a prediction algorithm utilizing the 

recognition of patterns through clustering data mining methods on the repetitive daily actions of bees. Elevated 

temperatures, food scarcity, and fluctuations in temperature and moisture can induce swarming actions among 

bees, often resulting in economic losses for farmers. Their technology encounters issues related to data transfer 

expenses. The expenses are escalating tremendously while attempting to cover more extensive areas. 

The CN has been utilized to track human living surroundings. They Established a sensor network to 

observe activity in the corridor, with 180 load detectors linked to 30 CN nodes. The load detectors are 

integrated into floor tiles, enabling them to communicate information. Each sensor node is connected to a 

computer tasked with gathering and accumulating environmental information from the sensor nodes; the 

resultant information is presented to represent the current condition of the corridor. Gawre, (2022) establish a 

centralized CN installed at a facility to monitor possible issues such as interrupters, converters, and transformer 

bearings (Gawre, 2022). Nodes inside the system can interact via a CN that employs a dynamic link-quality 

routing technique. The collection of sensors relays all sensor information to a base unit that processes and 

displays data. The advancement of CN has been utilized to monitor environmental noise. Kane et al., (2022) 

developed a system using a CN founded on the Tmote Invent prototype platform (Kane et al., 2022). They 

created a system utilizing tiny LAB, a Matlab-based program that facilitates real-time gathering, processing, 

and visualization of data gathered by the CN. Each of the sensors in the framework supplies sufficient 

empirical data on noise sources, and the system can evaluate the pollution level utilizing a predetermined noise 

indicator, which is a calculation.  

The server must possess computing capability. The whole network possesses a significant likelihood 

of a Single Point of Failure. A wireless detection unit was created that exhibits identical capability. The 

wireless detection unit employs integrated processing techniques for data to assess noise by calculating 

comparable continuous noise levels, hence reducing data transfer and enhancing the node's overall lifespan 

(Adil et al., 2020). 

In recent years, artificial intelligence has been utilized in environmental surveillance to manage 

substantial volumes of data. This article employs an RL methodology within a CN. Every sensor inside the 

network functions as an agent capable of interacting with its surroundings and progressively utilizing feedback 

to enhance its behavior. In a system that necessitates sensors to make decisions in a highly changing world. RL 

possesses unique benefits when planning.  

Data Analysis and Transmission Management Architecture and System 

• Heterogeneous Platform for Data Analysis and Transmission Management 

Figure 3 shows that the real-time data analysis and transmission management architecture is built on a 

high-performance Field Programmable Gate Array (FPGA) and embedded Central Processing Unit (CPU) 

platform. 
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Figure 3. Transmission management architecture 
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Moreover, the network protocol module integrated into the CPU can increase the architecture's 

flexibility and scalability. To sum up, the whole heterogeneous architecture can fully play the advantages of 

FPGA and embedded CPU and complement each other to form 1 +1 greater than 2 data transmission and 

processing capabilities, which has a broad application prospect in digital signal processing and transmission. 

Based on this architecture, developers can quickly build a set of embedded high-speed digital signal 

transmission and processing systems, which can complete various functions such as digital signal acquisition, 

high-speed data transmission, multi-channel signal online management, digital signal processing algorithm 

implementation, and protocol stack offloading. 

• Overall System Framework 

The whole system framework is formed by extending the heterogeneous processing architecture and consists 

of three processing boards in total. The first processing board has a high-speed analog-to-digital conversion 

card to collect the target signal. The signal is processed by the preprocessing algorithm module for 

channelization, and other algorithms are then transmitted to the Aurora TX module. Finally, it is transmitted to 

the backboard through the Aurora link, which is called the first processing board. The processing board is an 

acquisition processing board. The second processing board has an embedded CPU and a high-performance 

FPGA to form a heterogeneous architecture. The data received by the Aurora module is parsed, managed, and 

distributed on the FPGA, and the data is uploaded or stored according to the commands issued by the 

embedded CPU. Called a data processing board, The third processing board is equipped with 1-4 

large-capacity SSDs, which receive data from the PCI link and store it according to the file system configured 

by the software. It is called a storage processing board. 

In the system implementation process, other students in the laboratory complete the design of the data 

acquisition daughter card, algorithm preprocessing module, storage processing board, and embedded CPU 

software. This paper only involves the construction of the Aurora board-level transmission link, the 

heterogeneous architecture of the data processing board, the FPGA hardware logic of the data processing board, 

and heterogeneous architecture software and hardware interaction module design. 

Experimental Results and Analysis 

Simulation Parameter Configuration 

Simulation experiments are conducted on random deadline data packets to evaluate the performance and the 

algorithms in this chapter in reducing packet loss within the super cycle (i.e., data packets with insufficient 

remaining deadline to complete the remaining hops). The experiment sets a long time slot (such as 1000T) to 

compare the packet loss situation of the algorithm within a given time, and other parameters are shown in     

Table 1. 
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Table 1. Simulation parameters 

Parameter Value Description 

Learning rate a = 0.02 

discount factor h = 0.8 

instant reward r coefficient k1 = k2 = 0.6 

B = 1 or B = 1.3 

Delay reward R coefficient p1 = 0.1, p2 = 0.2, p3 = 0.3 

The experiment uses Load Runner to simulate the sending end of the data stream and installs Load 

Runner 9.0 on four machines, the data preprocessing program on one machine, and the storage handler 

program on one machine. The machine is dual-core with 4GB of memory and a 2.4 GHz CPU. Install HBase-1. 

3.1 on four machines, cooperate with Hadoop-2. 7.4, one of which plays the role of the controller node, and the 

data is finally stored in HBase. The operating system is Ubuntu 12.04, and the version is JDK 1.8. Table 2 

shows node information. 

Table 2. Cluster node information 

IP address Host name dentification instructions 

132.53.121.156 test001 NameNode Master 

132.53.121.13 test002 DataNode RegionServer 

132.53.121.24 test003 DataNode RegionServer 

1132.53.121.122 test004 DataNode RegionServer 

Algorithm Analysis 

In the simulation, the real-time data transmission scheduling algorithm based on DQN is called DQN, 

which is compared with the classical Edge Detection and Forecasting (EDF) algorithm and the enhanced 

Encoded Data Protection (EDP) algorithm. EDF prioritizes data transmission with the shortest deadline, while 

EDP divides priorities based on data urgency and remaining time/hop count. This chapter analyzes the packet 

loss situation of DQN and the other two algorithms under different deadlines and node numbers and evaluates 

network performance. 

Table 3. Average number of packets lost by different algorithms 

Algorithm EDF EDP DQN 

Number of packets lost 1506 1178 898 

Number of packets sent successfully 1598 1927 2207 

loss rate 0.465792 0.364224 0.277536 

Table 3 presents the average quantity of lost packets across several techniques, with the node data 

generation interval randomly established between 1.5 and 3.5 times the total hop count of the node. The DQN 

method outperforms the EDP and EDF methods, with the latter exhibiting the poorest scheduling efficiency, 

almost half that of DQN. The DQN simulation results are averaged ten times to ensure consistency in 

comparison. 
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Figure 4. Change of data generation cycle 

Figure 4 illustrates the performance variations of three distinct methods (DQN, EDP, EDF) regarding 
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generating cycle is a considerable integer double the total amount of data transfer hops (three times or more), 

the general network efficiency of the DQN method remains better. The packet loss rate of the EDF method 

remains elevated since the system's shortcomings are markedly exacerbated when all data production cycles 

are a multiple of the total amount of hops, leading to suboptimal efficiency in this context. When the data 

production cycle is thrice the total number of hops, the DQN and EDP algorithms demonstrate improved 

efficiency relative to the EDF method. 

 

Figure 5. Variation of packet loss number 

Figure 5 shows that the data generation cycle is randomly 1.5 to 3.5 times the total number of nodes, 

and the number of packet losses for the three algorithms changes as the number of nodes increases (5 to 25). 

The number of packet losses in EDF increases almost linearly, while EDP is not stable enough. After the 

number of nodes exceeds 20, packet losses surge sharply, indicating poor performance in multi-node random 

1 2 3 4 5 60

0.0

0.2

0.4

0.6

0.8

1.0

Epoch Q

A
cc

u
ra

c
y

Btch16 Train

Btch16 Test

Btch32 Train

Btch32 Test

Btch64 Train

Btch64 Test

Btch128 Train

Btch128 Test

1 2 3 4 5 60

0.0

0.25

0.5

0.75

1.0

Epoch F

A
cc

u
ra

c
y

0.1 0.2 0.3 0.50.0 0.4 0.6 0.7 0.8
10

20

30

40

50

60

70

80

90
BD-HARQ

DR

DO

Packet Loss Rate

R
ed

u
n

d
a
n

c
y

0.1 0.2 0.3 0.50.0 0.4 0.6 0.7 0.8

10

20

30

40

50

60

70

80

90
DR

DO

Packet Loss Rate

R
ed

u
n

d
a
n

c
y



  Natural and Engineering Sciences     208 
 

 

deadline scenarios. DQN performs the most stably, with the least number of packet losses and a steady 

increase. 

Table 4. Link test results 

Test Type Rate test Functional testing 

Rate (Gpbs) 74.5104 70.52724 

Efficiency (%) 110.352 / 

Error rate (%) 0 0 

Table 4 shows the test results of the rate test and function verification, which shows that the link built 

by Aurora protocol can efficiently and accurately complete board-level real-time data transmission and, at the 

same time, verify the logical correctness of the encapsulation and de-encapsulation module. The results of the 

two tests show that the system's Aurora board-level transmission link design can ensure the correct 

transmission of real-time data with a total bandwidth of 61.866 Gbps between processing boards. 

 

Figure 6. Test delay 
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The system's performance is tested when different numbers of nodes transmit data concurrently. The 

test was conducted multiple times, and the average value was taken. The system's throughput, storage delay, 

processing delay, and query time were recorded when the data size corresponded to 500, 750, 1000, 1250, and 

1500 nodes, respectively. The performance test results are shown in Table 5 below. According to the above 

table, the system's massive data support capability, real-time performance, and high concurrent throughput 

capability have all met the performance index requirements in the performance requirements analysis. 

Table 6. Real-time comparison table of simulation process after real-time optimization 

Satellite navigation system GPS Galileo GLONASS Beidou 

t (μs) 2688  2433  2526  2905  

t (μs) after real-time optimization 2030  1912  1962  2049  

P (us) 228241  412237  380190  315134  

P (μs) after real-time optimization 51022  37337  30737  40120  

It can be seen from Table 6 that after optimizing the information flow processing and transmission 

process of the data simulation software, the time delay has been reduced, and the time delay of the information 

flow processing and transmission process of each navigation system has been reduced to less than 1900 

microseconds, reaching the requirement of less than 2ms. The variance is reduced, and the time delay 

fluctuation is slight, which meets the real-time requirements of the data simulation software. 

Conclusion 

This study presents a multi-sensor environmental tracking system built around a Boolean network. Monitoring 

an environment generates intricate data that necessitates a system with substantial computational capacity and 

practical algorithms for processing. The system integrates a Boolean operating exclusively in affirmative or 

hostile states, 0 or 1. A Boolean network significantly decreases the level of detail of environmental data while 

preserving essential information. The research utilizes Boolean networks to diminish the detail of data related 

to the environment while retaining important information. In-grid computation employs an approach to 

computing that significantly conserves system assets. The method employs RL, which dynamically enhances 

its actions by administering rewards or punishments depending on average consolidated values. 

When the system exhibits inadequate performance in event detection, it incurs a penalty, prompting an 

instantaneous adjustment of the significance levels in the decision-making element. Upon the system's precise 

detection of the occurrence, it is awarded a reward, which is then added to the overall reward accumulated by 

the system. The system first exhibits poor results in event detection; nevertheless, it progressively enhances its 

capabilities and achieves accurate event monitoring throughout the entire network. The simulation's findings 

illustrate that the system integrates Boolean networks with reinforcement teaching to yield precise outcomes. 

The network can precisely identify the moving item by augmenting the weight on the grid aggregating value 

while reducing the weights on the present sensor input and the past grid aggregating value. The results indicate 

that prioritizing the grid mean aggregation value is the optimal model for the framework in two of the 
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evaluated cases. In the future, the research wants to conduct trials in grassland or urban environments for 

diverse ecological tracking tasks. 
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