ISSN: 2458-8989

Natural and Engineering Sciences

NESciences, 2025, 10 (2): 117-129 doi: 10.28978/nesciences.1703556

Studying the Genetic Resistance of Some Genotypes of Bread Wheat. Triticum Aestivum L Gall Disease Caused by the Nematode Anguina Tritici

Hussam Sabah Younis ^{1*}, Hasanain Ali Jaber ², Wisam Raheem Jiheel ³, Saifuldeen Ahmed Hasan ⁴, Raeed Mejbel Abdullah ⁵

^{1*} Diwan Affairs Department, Mustansiriyah University, Baghdad, Iraq. E-mail: hussamsabah@uomustansiriyah.edu.iq

² Department of Plant Production Technologies, Shatrah Technical Institute, Southern Technical University, Iraq. E-mail: h.ali.jaber@stu.edu.iq

³ Department of Plant Production Technologies, Shatrah Technical Institute, Southern Technical University, Iraq. E-mail: wisam.rahim@stu.edu.iq

⁴ Department of Therapeutic Nutrition Techniques, College of Health and Medical Techniques, Kirkuk, Northern Technical University, Iraq. E-mail: drsaif.ahmed@stu.edu.iq

⁵ Centre of Technical Research, Northern Technical University, Iraq. E-mail: raed.m.abdullah@ntu.edu.iq

Abstract

The field experiment was carried out during the winter season of 2023 - 2024. The soil of the research project field was prepared in a farmer's field in Kirkuk Governorate. The experiment was conducted on 11/26/2023. This experiment was to study the effect of the wheat crop Triticum aestivum L. through many diseases that infect it and ultimately lead to large economic losses. Among these diseases on the crop is the wheat gall nematode Anguina tritici, which reduces the amount of the crop by different percentages according to the planted variety. There are varieties resistant to the disease that are not affected by infection, and sensitive varieties that lose a large amount of the economic yield. The experiment showed the variation of genetic structures, namely Sham 6, Levante, Adna 99 and Bankal, among them to infection with the wheat gall nematode, and the number of galls showed a variety In terms of resistance to nematode infection, the Bankal genotype outperformed the other genotypes and gave the lowest number of galls per spike, reaching 0.90 galls/spike, while the Levante genotype was the most affected genotype by infection among the tested genotypes, with a significant difference from the rest of the genotypes, reaching 21.33 galls/spike. As for the interaction between the contaminated and healthy treatments, the Bankal genotype also gave the lowest percentage among the genotypes. As for the gall weight, the genotypes used in the experiment varied in their degree of sensitivity to wheat grain gall disease, as the Bankal genotype gave the lowest gall weight,

reaching 1.00 mg/gall compared to the gall weights of the other tested genotypes, while the Levante genotype was 14.57 mg/gall. As for the percentage of infected spikes, the lowest infection rate was in the Bankal genotype. The percentage reached 5.83%, while the two most affected genetic compositions by infection are Sham 6 and Levante, both of which gave very high percentages of infected spikes in the field, recorded 49.55% and 100.54% respectively, which are percentages that do not differ significantly. As for the effect of planting dates, the number of grains per spike was affected by the different planting dates, and the date (10 K1) gave the highest number of healthy grains per spike, which was 18.54 grains/spike, with a significant difference, except for the date (30 T2), while the date (10 T2) gave the lowest number of grains per spike, recording 13.51 grains/spike. In the 100-grain weight trait, the date (10 K1) gave the highest weight for the 100-grain trait, recording 4.77 g/100 grains, with a significant difference from the date (20 T2). While the date (10 T2) gave the lowest grain weight, which amounted to 4.06 g/100 grains, there were significant differences among the planting dates in terms of their effect on the traits of the economic yield of the plant when the soil was contaminated with wheat galls and compared with the comparison treatments, as the date (10 K1) gave the highest weight of the economic yield, 7.69 g/plant, with a significant difference from the rest of the other dates except the date (30 T2), while the date (10 T2) recorded the lowest weight of the economic yield, which amounted to 4.89 g/plant. Trait of the biological yield/g, the date (10 K1) recorded the highest value for the trait of the biological yield, which amounted to 27.41 g/plant, and did not differ significantly from the date (30 T2), while the date (10 T2) gave the lowest value for the dry weight, which amounted to 18.97 g/plant.

Keywords:

Viruses, (CMV), genetic structures, broad bean, faba bean.

Article history:

Received: 04/03/2025, Revised: 20/05/2025, Accepted: 23/06/2025, Available online: 30/08/2025

Introduction

Wheat crop Triticum aestivum L. is one of the most important cereal crops in the world due to its nutritional importance and the extent of its trade exchange in the world, Wheat crop comes at the forefront of crops in terms of production, cultivated area, and its frequent use in human daily needs, as it is called (the king of crops) due to its many specifications (Al-Jabouri, 2012).

Wheat is the most necessary substance for the human body, due to the good balance between carbohydrates and proteins in its grains, whereby wheat grains contain 12-17% proteins, 76-80% starches, and 1.2-1.5% fats, stated that wheat crop comes at the forefront of cereal crops that humans need in abundant quantities, as it represents the main food source for more than 35% of the world's population (Safi et al.,2015).

The area planted with wheat in Iraq in 2014 amounted to about 8,528 thousand dunums, with a productivity of 5,055 thousand tons, while the average yield per dunum was 592.8 kg (Directorate of Agricultural Statistics,2021). The global wheat crop production in 2013 was approximately 656.5 million tons (USDA, 2014; Uvarajan, 2024).

The wheat gall nematode Anguina tritici is one of the oldest discovered and economically important nematodes on wheat plants, and is one of the most important pests recorded on wheat plants (Christie,1959). Although it is rare in countries that use clean seeds free of nematode infections, it is still widespread in Eastern European countries and parts of Asia, Africa and Australia, such as Russia, Syria, Iraq, Pakistan, India, China, Australia, New Zealand, Egypt and Brazil (Agrios, 2005).

The incidence of this disease increases when it is accompanied by the bacteria Corynebacterium tritici, which is transmitted by the young wheat gall nematode to the plant top, causing yellow ear rot on the

ears or spike blight (Al-Hazmi,1962; Adriani et al, 2023). The nematode A. tritici is one of the most prominent nematode diseases that wheat crops are exposed to, and it is considered the first plant-parasitic nematode (Othman,2008; Nayak & Raghatate, 2024). The damage caused by wheat gall nematodes to the crop ranges between 30% and 70% of the crop (Radhika & Masood, 2022). The importance of these nematodes increases due to their tolerance to unfavorable conditions for more than 30 years (Thorne, 1961).

Given the importance of the disease on wheat plants and the large economic losses it causes in Iraq and the lack of positivity in using chemical pesticides to combat the disease and their high cost, as well as the expansion in crop cultivation, it was necessary to study the effect of some biological alternatives from the field in reducing the occurrence of this matter and reducing its pathogenic effect on the wheat crop (Amer et al., 2020), (Balavandi, 2017; Krishnaraj et al., 2020). The study included the following axes: Testing the sensitivity of some genetic compositions of bread wheat that have recently entered the country and screening the genetic compositions that are resistant to it in comparison to the locally prevailing genetic compositions (Abdullah & Hasan, 2021; Hasan & Abdullah, 2020; Hasan et al., 2022; Muhammad et al., 2021; Younis, 2022b).

Materials and Methods

Collection of wheat seed galls

Wheat galls were isolated manually (using forceps) from wheat grains infected with galls from samples obtained from fodder grain markets in the commercial market, and the isolated galls were placed in a tightly sealed glass container until used in field contamination.

Preparation and division of the soil for cultivation

A field experiment was carried out during the winter season (2023-2024). The soil that was prepared for conducting field experiments for the research project, conducted in the field of one of the farmers in Kirkuk Governorate. The soil prepared for cultivation was ploughed on 11/26/2023 with a rotary plough, then levelling and smoothing operations were carried out with a chisel plough, after which field operations were carried out. The experimental land prepared for planting field treatments was divided into square panels, as the dimensions of each panel were (1 m2) and separated from the other treatment by a 50 cm wide soil barrier to ensure that there was no interaction among the different treatments also to prevent the transfer of nematode juveniles to the comparison treatments through irrigation water. Then, chemical fertilizers were added as recommended by the Ministry of Agriculture.

Design of field Experiments

Design of the experiment concerning the tested wheat varieties

This experiment was applied in a randomized complete block design (R.C.B.D) with a split-plot system under field conditions, with dimensions of (1 m2) for each of the contaminated and healthy (comparison) treatments in each of the three replicates in the experiment, according to eight treatments for each replicate.

The design of the experiment concerning the spacing of the planting periods after the first irrigation before implanting

The experiment was implemented in a Randomized Complete Blocks Design (R.C.B.D) in the nursery affiliated with the Directorate of Kirkuk Agriculture, and under field conditions, whereby planting was done

in divided panels with dimensions of 1 m2 and with four different treatments for each of the three replicates in the experiment.

The design of the experiment concerning adding animal organic fertilizers

The experiment was implemented in a design (R.C.B.D) as in the above paragraph in the nursery affiliated with Kirkuk Agriculture Directorate, to know the extent of the effect of fertilizers in reducing or reducing the severity of the disease on plants contaminated with warts.

Experimental design concerning the spacing gall from seeds in the depths of the soil

The experiment was carried out with the same design as in the previous paragraph, and under field conditions, as cultivation was carried out in divided panels with dimensions of (1 m2), with three replicates (panels), and each replicate contained four treatments.

3-6 Genetic compositions, Varieties

The experiment was conducted to test the sensitivity of some genetic compositions of imported wheat to gall disease caused by the nematode A. tritici, as shown in Table 1.

7D 11 1	XX 71 .		1 ' .1	•	1	• , • • ,	c .·	• •
Table I	W/heat v	varieties i	ised in the e	vneriment to	test the	cencifivity c	f genetic con	nnosifions
Table 1.	· vv mcat	variones e	iscu ili tiic t	лренинен и) tost the	SCHSILIVILY C	i genene con	ipositions

planted genetic structures	genetic structure	Producing state	
Sham 6	Fine wheat	Local	
Levante	Coarse wheat	Italian	
Bancal	Fine wheat	Spanish	
Adana99	Fine wheat	Turkish	

The local genetic structure (Sham6) was planted with these imported genetic structures to compare it with them, because it is the genetic structure approved for planting in the region, in addition to its sensitivity to infection with the nematode Anguina tritici.

Testing the sensitivity of some wheat varieties to wheat gall disease caused by the nematode A. tritici

Three imported wheat varieties were tested, the two genetic structures are smooth and the genetic structure is rough, in addition to the local genetic structures Sham6, planted in one of the farmers' fields affiliated with Kirkuk Governorate, and others, to determine the extent of their sensitivity or tolerance to the grain gall nematode caused by the nematode. The experiment was carried out according to the design of complete randomized blocks with the split plot system once (Split Plot in RCBD) and the experiment included treatments distributed over the four wheat varieties mentioned above according to three replicates, as each genetic structure from the mentioned genetic structures was planted in a treatment independent of the treatment of the other genetic structures.

The seeds of the fertilized genetic structures were planted on (10 T2) in the form of lines. Each treatment was planted in rows, with four rows of plants for each treatment, with dimensions of 1 m2. Each row included 10 seeds, with a distance of 10 cm between seeds and a depth of 5 cm. A rate of one gallon was added with each seed of the planted wheat.

Seeds of uncontaminated treatments were planted as a comparison next to the contaminated treatment; this arrangement was in all treatments of the used genetic compositions, with three replicates for

each treatment. They were distributed randomly in the field to avoid researcher bias, then the plants were watered whenever necessary, and the specific measurements of infection, growth, and yield criteria were taken according to the specified period for each studied trait.

Effect of spacing of the planting dates after irrigation with the tarbid on the nematode A. tritici

The experiment was carried out according to the randomized complete block design (R.C.B.D.), and the genotype Sham 6 was used in the experiment because it is sensitive to the disease and is commonly grown in the country. The treatments were planted in rows, with 10 seeds per row and a wheat gall per seed. Chemical fertilizers were added to the treatments before planting according to the recommendations of the Ministry of Agriculture per dunem and mixed well with the soil. 50 kg/dunem of urea, 25 kg/dunem of the compound, and 50 kg/dunem of superphosphate were added. The treatments were distributed over four planting dates for the 2014-2015 agricultural season as follows:

- Planting on (10 T2) (uncontaminated) treatment: The treatments were planted without contamination
 with warts and were planted with dusty seeds and irrigated with water for comparison with the
 treatments contaminated with warts at other planting dates
- Planting on (10 T2) *: The soil was contaminated with galls, then planted and irrigated with water directly, with three replicates, and distributed randomly in the field.
- Planting on (20 T2): The soil was contaminated on the first planting date, and the land was left for ten days, and then planted on the mentioned date
- Planting on (30 T2): The soil was contaminated with wheat gall on the first planting date, and the treatments were carried out as on the previous date.
- Planting on (10 K1) *: The soil was contaminated with wheat gall on the first planting date, with three replicates, so that it appears once randomly in each Sector.
 - * 10 T2 = 10 November (first planting date), * 10 K1 = 10 December (last planting date)

The studied traits

After the crop ripened and the signs of maturity were shown, some measurements related to the study were made, which included the following parameters:

First: Infection criteria: (taken after the crop ripened)

- 1. Number of seed galls/spike: In the harvest season, after manually removing all contaminated grains from the spike, the number of warts per spike was calculated
- 2. Average weight of the gall (mg): Weight of seed gall / (mg): A very sensitive balance (Metler) was used to measure the weight of the gall
- 3. Percentage of infected spikes: Percentage of infection: Before harvesting the plant in the field to take data from it, samples (spikes) were taken randomly at a rate of 20 spikes from each treatment to determine the percentage of infected spikes. This equation was applied to extract the percentage:

Number of infected spikes

Percentage of infected spikes = $(\times 100/ \text{ Total number of spikes taken})$

Statistical Analysis

All data were analyzed using the statistical program (SAS) to study the effect of the studied factors according to the types of designs mentioned for each paragraph previously, and the Duncan Multiple Range Test was used to compare the effect rates of the treatments on the studied traits.

Results and Discussion

Disease symptoms on wheat plants infected with the wheat gall nematode Anguina tritici

Figure (1) shows that the second-stage juveniles of the nematode significantly affected the first leaves of wheat seedlings planted in soil that is contaminated with gall, as deformities and wrinkles appeared on the upper surface of the leaf, along with yellowing and a reduction in the leaf area as a result of the second-stage juveniles feeding on the leaves before the appearance of the flower spike, because the juveniles feed on the leaves in the stage of external parasitism on the plant before the stage of internal parasitism, where they later infect the grains and turn them into small black galls at the end of the season (Hasan, Abdullah, 2021).

Figure 1. The effect of the second-stage nematode juveniles on the first leaves of wheat seedlings

The nematode juveniles affected the stems and spikes of wheat plants as in Figure 4, whereby the second-stage juveniles dwarfed the stems and deformed and wrinkled the spikes. We notice that the infected spikes are wrinkled or twisted or have a gap in their spikes, etc., as in Figure 2. The colour of the infected grains is initially a dark green colour, darker than the healthy grains, due to the presence of juveniles inside the grains. As for the stems, we notice the folding and twisting of the stems and their dwarfing as a result of the juveniles feeding on them by absorbing the plant juice from them before the spikes appear (Younis, 2022a).

Figure 2. Effect of second-stage juveniles of wheat gall nematodes on stems and ears of infected wheat plants.

The juveniles and adults of the nematode also affected wheat grains, where their colour turned grey and then black during the harvest season, and their shape was spherical and small in size (Figures 3 and 4. These symptoms are consistent with what was mentioned by Taha et al., 2010) mentioned that the grains after being transformed into gall are brown or black, while healthy grains do not contain second-stage juveniles of wheat gall nematodes and their color appears bright golden yellow.

Figure 3. Wheat grains infected with wheat gall disease and others are healthy for all the studied genetic compositions.

Figure 4. Testing the sensitivity of some wheat varieties to wheat grain gall disease caused by the nematode A. tritici

Testing the response of the tested wheat varieties to infection with grain wart nematode disease

1- Number of gall/spikes

The results of Table 2 showed that the tested genetic compositions varied among themselves in terms of nematode infection. The Bankal genetic composition outperformed the other genetic compositions and recorded the lowest number of galls per spike, of 0.90 gall/spike, while the Levante genetic composition was the most affected genetic composition tested by infection, with a significant difference from the rest of the genetic compositions, recording 21.33 gall/spike. As for the interaction between the contaminated and healthy treatments, the Bankal genetic composition also gave the lowest percentage among the genetic compositions. The reason for the superiority of the Bankal genetic composition over the other tested genetic compositions may be due to the lack of preference of this genetic composition for the climbing nematode juveniles on it,

either due to the thickness of the cell wall or the presence of protein substances that lead to the killing of the nematode juveniles. Therefore, the number of gall is small compared to the Levante genetic composition, which showed high sensitivity to this disease (Al-Jubouri et al., 2024; Alatawi, et al., 2024) and the reason may also be attributed to the presence of a certain type of enzymes that repel or are not palatable to nematodes, and thus the infection on the plant is low. This is consistent with what Parveen et al. (2003) proved about the presence of varieties resistant to gall disease with no gall on the plant, as in the genetic structure HD-2009 and WH-542 and sensitive varieties, as in HUW-234 and PBW-343 and UP-2338 and RR-21 and HD-2285. Also, what was concluded by (Hasan et al., 2023) was that all the tested coarse and fine wheat varieties were sensitive and varied in their sensitivity to nematode infection. The Adnanian genotype recorded the highest number of galls of 20.9 galls/plant pot, while Axad65 recorded the lowest, 2.5 galls/plant pot.

Table 2: Number of galls/spikes resulting from wheat gall infection caused by nematodes for the studied varieties

Treatment		Treatments			
Ratio	Genetic Genetic		Genetic	Genetic	
	composition composition		composition of	composition	
	Adana99	Bankal	Levante	Sham6	
0.00	0.00	0.00	0.00	0.00	Comparison
b	d	d	d	d	Treatment
10.68	7.37	1.81	22.34	11.22	Contaminated
a	c	d	a	ь	Treatment
	3.68	0.90	11.17	5.61	Rate of Genetic
	c	d	a	b	Compositions

2- Weight of a single gall/mg

Significant differences were found among the experimental treatments in Table 3. the genetic compositions used in the experiment varied in their sensitivity to wheat grain gall disease, as the genetic composition Bankal recorded the lowest gall weight of 1.00 mg/gall compared to the gall weights of the other tested compositions, while the genetic composition Levante recorded 14.57 mg/gall. The reason for the low gall weight in the genetic composition Bankal may be due to the nematodes not preferring this genetic composition, so it is resistant to nematode infection. This opinion is consistent with what was mentioned by (Hasan et al., 2024) that the genetic compositions possess some resistance genes that prevent nematodes from reproducing and developing. While we find that the Levante genetic compositions, which have a high gall weight and a significant difference from other genetic compositions, are considered preferred by nematodes to parasitise them, thus completing the life cycle (Jaber et al., 2025). Also concluded that all the tested genetic compositions were sensitive and varied among themselves in the gall weight rate/mg; the OXAD65 genetic composition gave the highest wart weight of 4 mg/gall, while the Cham4 genetic composition recorded the lowest gall weight of 1.5 mg/wart.

Table 3: Testing the sensitivity of the tested wheat varieties to wheat grain gall disease and its effect on the gall weight/mg

Treatment		Treatments			
Ratio	Genetic	Genetic	Genetic	Genetic	
	composition	composition	composition of	composition	
	Adana99	Bankal	Levante	Sham6	
0.00	0.00	0.00	0.00	0.00	Comparison
b	d	d	d	d	Treatment
7.87	6.44	2.01	14.57	8.47	Contaminated
a	c	d	a	ь	Treatment
	3.22	1.00	7.28	4.23	Rate of Genetic
	c	d	a	b	Compositions

3-Percentage of infected spikes

The results of Table (6) showed that the lowest infection rate was in the genetic composition of the Bankal, whereby the rate recorded 5.83%, while the two genetic compositions most affected by infection were Sham 6 and Levante, as they recorded very high rates of the percentage of spikes infected in the field, recording 49.55% and 100.54%, respectively, these rates that do not differ significantly between them. The reason for this may be that the genetic composition of the Bankal is no longer preferred for nematode feeding in the external parasitism stage before the appearance of the flower spike, nor in the internal parasitism stage in the ear emergence stage. Perhaps the reason is due to the genetic compositions possessing resistance genes related to plant production of some compounds that repel or are not preferred by nematodes, in addition to the thickness of the cell walls, and thus it is not sensitive to infection. This is consistent with (Hasan, 2022), and this is consistent with what was mentioned by (Shekh and Aziz, 2021). that the soft wheat varieties and genetic compositions studied differed in their sensitivity to gall nematodes, as the genotype Saberbeck and the genotype Pavon F67 were resistant (Jaber et al, 2025).

Table 4: The effect of gall nematodes on the percentage of infected spikes for some tested wheat varieties

Treatment		Treatments			
Ratio	Genetic	Genetic	Genetic	Genetic	
	composition	composition composition		composition	
	Adana99	Bankal	Levante	Sham6	
0.00	0.00	0.00	0.00	0.00	Comparison
b	d	d	d	d	Treatment
62.24	37.67	11.67	100.54	99.11	Contaminated
a	b	c	a	a	Treatment
	18.83	5.83	50.27	49.55	Rate of Genetic
	b	c	a	a	Compositions

The effect of spacing of wheat planting dates and infection with wheat grain gall nematode caused by A. tritici on infection traits and yield of wheat plants of genetic structure Sham 6.

The results in Table 5 showed that the number of grains per spike was affected by the different planting dates. The date (10 K1) recorded the highest number of healthy grains per spike, which was 18.54 grains/spike, with a significant difference, except for the date (30 T2), while the date (10 T2) recorded the

lowest number of grains per spike of 13.51 grains/spike. In the 100-grain weight trait, the date (10 K1) recorded the highest weight for the 100-grain trait, which amounted to 4.77 g/100 grains, with a significant difference from the date (20 T2), while the date (10 T2) gave the lowest weight of grains, which amounted to 4.06 g/100 grains. The reason for the lack of a decrease in the weight of 100/g at the last planting date may be because delaying the planting date in soils contaminated with gall may give the plant a chance at the seedling stage or Before emerging from the soil surface to escape infection by killing the juveniles in the absence of the host, because the juveniles of the nematode cannot survive for a long time in the absence of the host, and thus their deaths increase to some extent This interpretation is consistent with what was stated by (Abdullah et al., 2025).

There were significant differences between planting dates in terms of their impact on the trait of the economic yield of the plant when the soil was contaminated with wheat gall and compared with the comparison treatments, whereby the date (10 K1) gave the highest weight for the economic yield of 7.69 g/plant and a significant difference from the rest of the other dates except for the date (30 T2), while the date (10 T2) recorded the lowest weight for the economic yield of 4.89 g/plant. The reason for the lack of a decrease in the economic yield at the date (10 K1) may be due to the lack of climbing young plants that reached the stage of ear emergence and the entry of grains into the milky stage and thus their damage or weak growth as a result of the low-temperature atmosphere that does not allow young plants to move easily and climb to the growing top of the seedling, as well as the superiority of this date in the trait of the components of the yield and thus increased the economic yield, which is consistent with what (Hasan, 2020).

The wheat grain gall nematode affected the biological yield trait/gm, as the date (10 K1) recorded the highest value for the biological yield trait, reaching 27.41 gm/plant, and did not differ significantly from the date (30 T2), while the date (10 T2) recorded the lowest value for the dry weight, of 18.97 gm/plant, and the reason for this may be that delaying the planting date leads to the death of large quantities of liberated juveniles because the juveniles liberated in the absence of the host cannot survive for a long time, and also that the coldness of the soil causes the juveniles to be killed after their release, and this is consistent with what (Alatawi, 2024).

Table 5. The effect of wheat planting dates on the yield traits of wheat- genetic composition Sham6

Planting	Soil Condition	Studied	Number of Grains	Weight of 100	Economic	Biological
Date		Traits	per Spike	Grains (g)	Yield (g)	Yield (g)
10 T ²	Uncontaminated		60.73a	6.51b	15.84a	47.71a
	(Control)					
10 T ²	Contaminated at		13.51c	4.06d	4.89c	18.97d
	planting time					
20 T ²	Contaminated on		14.94c	4.44c	5.46c	22.61c
	the first date					
30 T ²	Contaminated on		17.04b	4.61bc	7.12b	26.81b
	the first date					
10 K ¹	Contaminated on		18.54b	4.77b	7.69b	27.41b
	the first date					

Results and Recommendations

The combinations varied together in their sensitivity to wheat gall disease and nematodes.

The genetic combination Bencal was distinguished from the other combinations by its resistance to nematodes, with a decrease in infection criteria due to the lack of significant difference in growth criteria and plant yield from the comparative (uncontaminated) plants.

Delaying the planting date (January 10) reduced infection criteria significantly in comparison with the other planting dates of planting

Tips:

- 1. Planting clean wheat grains in soil not contaminated with gall to reduce infection.
- 2. Planting the Bankal variety in Kali (10 T2).
- 3. Conducting advanced research and experiments on the Bankal variety, which is known for not being preferred by the grain gall nematode A. tritici, and identifying the developmental or resistance genes that it has function against the disease.
- 4. Studying the effect of other strains of the A. tritici nematode for other soils and conditions on the rate and severity of infection, growth criteria and yield of the Bankal wheat plants.

Author Contributions

All Authors contributed equally.

Conflict of Interest

The authors declared that no conflict of interest.

References

- Abdullah, R. M., & Hasan, S. A. (2020). Estimation of components of genetic variance using jinks-hayman method analysis on the crop of faba bean (Vicia faba L.). *International Journal of Agricultural & Statistical Sciences*, 16. https://connectjournals.com/03899.2020.16.1897
- Abdullah, R. M., Hasan, S. A., & Jaber, H. A. (2025). Performance and Genotypic and Phenotypic Variations of Half Diallel Crosses in Yellow Maize Crop Zea Mays L. *Natural and Engineering Sciences*, *10*(1), 188-196. https://doi.org/10.28978/nesciences.1643492
- Adriani, D., Dewi, R., Saleh, L., Heryadi, D. Y., Sarie, F., Sudipa, I. G. I., & Rahim, R. (2023). Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. *Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications*, 14(3), 103-111. https://doi.org/10.58346/JOWUA.2023.I3.008
- Alatawi, M., Alhajoj, Y. A. A., & Abdullah, R. M. (2024). Evaluation of the performance of several cultivars of bean (Vicia faba L.) for yield and its components under three different cultivation distances. *Tikrit Journal for Agricultural Sciences*, 24(3), 256-266. https://doi.org/10.25130/tjas.24.3.20
- Al-Hazmi, Ahmed bin Saad (1992). Introduction to Plant Nematology, First Edition, College of Agriculture, *King Saud University Press*, p. 321.

- Al-Jabouri, Raed Mujbil Abdullah Hussein (2012). Effect of seed rates on the productivity of pure lines and their combinations in bread wheat. Triticum aestivum L. Master's thesis, College of Agriculture Tikrit University.
- Al-Jubouri, R. M., Mohammed, M. I., & Al-Mafarji, T. R. T. (2024, July). Genetic Analysis of Heterosis and some Genetic Parameters of Half Diallel Crosses in Maize (Zea mays L.). In *IOP Conference Series:* Earth and Environmental Science (Vol. 1371, No. 5, p. 052027). IOP Publishing. 10.1088/1755-1315/1371/5/052027
- Amer, K. Z., Jebur, H. A., & Swain, K. H. (2020). Study evaluation and analysis of the properties of some performance standards for agricultural tractor and sorghum bicolor (L.) Moench yield. *International Journal of Agricultural & Statistical Sciences*, 16. https://connectjournals.com/03899.2020.16.1811
- Balavandi, S. (2017). Further study industrial production in hemp crops agriculture. *International Academic Journal of Science and Engineering*, 4(1), 123-127.
- Christie, J. R. (1959). Plant Nematodes: Their Bionomics and Control. Agricultural Experiment Stations, University of Florida, Gainesville, 1959. xi + 256 pp. \$3.75. https://doi.org/10.1126/science.130.3367.94.b
- Directorate of Agricultural Statistics. (2021). Central Statistical Organization. Ministry of Planning. Iraq.
- Hasan, S. A., & Abdullah, R. M. (2020). Estimating the performance and gene action of a number of individual genotypes and hybrids on the crop of faba bean (Vicia faba L.).
- Hasan, S. A., & Abdullah, R. M. (2021). Characterization of genetic variability through the use of RAPDS markers of a group of native and commercial genotypes of bean species. *International Journal of Agricultural & Statistical Sciences*, 17. https://connectjournals.com/03899.2021.17.1141
- Hasan, S. A., Abdullah, R. M., & Hanoon, M. B. (2022). Effect of foliar application with proline on growth, yield, and quality of faba bean (Vicia faba l.) A review. *Eur. J. Agric. Rur. Edu*, *3*(3), 15-21.
- Hasan, S. A., Abdullah, R. M., Hanoon, M. B., & Sahi, M. K. (2023). Genetic and path coefficient analyses of quality-related traits of oat (Avena sativa L.) with potassium application. *SABRAO J. Breed. Genet*, 55(5), 1526-1535. http://doi.org/10.54910/sabrao2023.55.5.7
- Hasan, S. A., Khadhum, M. K., Hanoon, M. B., & Abdullah, R. M. (2024). Genetic analysis of the phenotypic and molecular correlations among the rapd-pcr markers in peanut (arachis hypogaea 1.). *SABRAO Journal of Breeding & Genetics*, 56(3). http://doi.org/10.54910/sabrao2024.56.3.19
- Jaber, H. A., Younis, H. S., Jiheel, W. R., Abdullah, R. M., & Hasan, S. A. (2025). Genetic Evaluation Study of Fava Bean Vicia Faba L. Under the Influence of the Transfer and Diagnosis of the Bean Yellow Mosaic Virus in Several Areas of Kirkuk Governorate. *Natural and Engineering Sciences*, *10*(1), 151-161. https://doi.org/10.28978/nesciences.1642299
- Krishnaraj, N., Pavan, S., Mohan, C., & Yogesh, S. (2020). Improvement of Crop Production Using IOT. *International Journal of Advances in Engineering and Emerging Technology*, 11(1), 11–21.

- Muhammad, N. I., Humada, Y. H., & Abdullah, R. M. (2021). Using phenotypic and molecular indicators RAPD-PCR to evaluate the performance and genetic dimension of a number of genotypes and their individual hybrids in the chickpea plant Cicer arietinum L. https://www.nveo.org/index.php/journal/article/view/2456
- Nayak, A., & Raghatate, K. S. (2024). Image segmentation and classification of aquatic plants using convolutional neural network. *International Journal of Aquatic Research and Environmental Studies*, 4, 14-19. https://doi.org/10.70102/IJARES/V4S1/3
- Othman, Ahmed Ahmed (2008). The World of Nematodes: The Problem The Solution, Al-Durr Al-Arabiya for Publishing and Distribution, Cairo, Arab Republic of Egypt, p. 600.
- Parveen, R., Khan, A. A., Imran, M., & Ansari, A. A. (2003). Response of wheat varieties to the seed gall nematode, Anguina tritici. *Nematologia Mediterranea*.
- Radhika, A., & Masood, M. S. (2022). Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. *J. Internet Serv. Inf. Secur.*, 12(4), 177-196. Agrios, G. N. 2005. Plant Pathology, Fifth edition, Academic Press, London, 922. https://doi.org/10.58346/JISIS.2022.I4.013
- Safi, Suhad Madkour Abdul Sahib and Mohammed Hazal Kazim Al-Baldawi (2015). Effect of some plant growth regulators and irrigation water quality on the growth and quality of bread wheat. *Iraqi Journal of Agricultural Sciences*. 46(3): 312-312.
- Shekh, Q., & Aziz, J. M. (2021). Test of nano-fertilizer and different irrigation intervals on yield and growth characteristics of maize Zea mays L. *NTU Journal of Agriculture and Veterinary Science*, *1*(1), 14-20. https://doi.org/10.56286/ntujavs.v1i1.42
- Taha, Khaled Hassan and Bassam Yahya Ibrahim. (2010). New biotypes of the fungus Trichoderma SPP are efficient in producing some growth regulators. *Al-Rafidain Journal of Agriculture*. 38(Supplement 2): 75-82.
- Thorne, G. (1961). Principles of nematology.
- USDA, United state Department of Agriculture, (2014). World Wheat Production, world wheat production.
- Uvarajan, K. P., & Usha, K. (2024). Implement A System for Crop Selection and Yield Prediction Using Random Forest Algorithm. *International Journal of communication and computer Technologies*, 12, 21-26.
- Younis, H. S., Abdullah, R. M., Hasan, S. A., & Abdul-Sattar, A. A. (2022). Systemic resistance indicators study and seed gall nematode disease caused by Anguina tritici affecting of biological and varietal treatments on bread wheat (Triticum aestivum L.). *Int. J. Agric. Stat. Sci*, 18(1), 289-296. https://connectjournals.com/03899.2022.18.289
- Younis, H. S., Abdullah, R. M., Hassan, S. A., Sattar, A. A. A., & Amer, K. Z. (2022). Effect of biological and cultivar control to Ear-Cockle Nematode disease caused by the nematode (Anguina tritici) on different genotypes of bread wheat (Triticum aestivum L.). *Ann. For. Res*, 65(1), 916-930. http://dx.doi.org/10.5281/zenodo.7262806