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Abstract 

Water quality and maintenance are perhaps the most crucial features for optimal fish productivity and health 

in Recirculating Aquaculture Systems (RAS). This study develops an SD model designed to optimize the 

water quality parameters RAS operates on, including ammonia, nitrites, nitrates, dissolved oxygen, and pH 

values. The model integrates biological and chemical operational components, featuring feedback loops 

that represent fish metabolism, dependency on feed, biofilter dynamics, and water exchange. Several 

operational scenarios were tested, varying stocking density, feed intensity, and aeration, to assess the 

system's response. Results from predictions were shown to validate the model's capacity to evaluate 

decision bioreactor control changes, thus enabling timely intervention in critical zones where parameter 

values are destined to change. The SD method notably demonstrates how these interactions can evolve, 

particularly highlighting the need for strong biological filtration and oxygenation to cleanse the system of 

toxic substances before they reach dangerous concentrations. Sensitivity analysis yielded that the most 

stable scenario of significant water quality improvement was achieved through changes to biofilter control 

and adjustments to feeding rates. The model demonstrates how planning control can be implemented within 
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aquaculture systems, with a focus on enhancing system sustainability, reducing volumetric water resource 

consumption, and providing optimal conditions for aquaculture growth. This work emphasizes the role of 

dynamic modeling in developing environmental and economic sustainability for RAS efficiency. 
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Introduction 

The use of "Recirculating Aquaculture Systems" (RAS) has integrated modern practices in intensive fish 

farming biosecurity, treating water and reducing water usage in a closed-loop system. For all their usefulness, 

the water biosecurity features of RAS systems pose significant challenges due to the retention of waste 

compounds like ammonia, nitrite, and carbon dioxide, which are harmful to fish health and growth (Seidgar 

et al., 2024; Timmons & Ebeling, 2013). Traditionally, water quality monitoring methods have relied on 

empirical rules using fixed control-structured models, which are outdated because they fail to adapt to changes 

in system parameters (Lekang, 2013). As a starting point, system dynamics (SD) modeling examines the 

biological, chemical, and physical components of RAS from an integrative standpoint, which is a step in the 

right direction (Ford, 2010). In particular, SD models are well-suited for simulating feedback loops and time-

dependent processes, thereby providing options for adaptive water management (Halog et al., 2001). Most 

scholars recognize the benefit of SD in aquaculture, focusing on predicting outcomes from given operational 

scenarios and optimizing system design (Rezaei et al., 2021). 

Additionally, the integration of SD with real-time sensors enhances decision-making and the 

sustainability of aquaculture (Raman et al., 2024; (Van Rijn, 2013; Chalmers University of Technology, 

2019). In the case of freshwater aquaculture, monitoring systems may range from measuring water TAN 

(Total Ammonia Nitrogen) and Total Dissolved Oxygen (DO) to pH, biofilters, and even Ammonia Nitrogen 

metrics, which are better suited to shift risk interfaces and optimize fish welfare outcomes (Subramanian & 

Malhotra, 2023; Kamali et al., 2022; Blancheton et al., 2013). The literature reports various applications of 

System Dynamics (SD) in RAS frameworks, primarily concerning water quality management, which is still 

in its initial phases compared to other environmental applications that SD has addressed (Kulkarni & Jain, 

2023; Sterman, 2000). This dissertation aims to develop an elaborate System Dynamics (SD) model for 

Recirculating Aquaculture Systems (RAS) to enhance forecast, control, and strategic management of targeted 

water quality parameters (Shi et al., 2020). 

Literature Review 

The health of aquatic organisms, as well as the sustainability of Recirculating Aquaculture Systems (RAS), 

relies heavily on optimal water quality management practices (Aljehani et al., 2023). To assist RAS managers 

with some of the intricate water treatment steps, Kamali et al. developed a mechanistic system dynamics 

model that evaluates operational strategies through virtual fish performance, waste production, and water 

treatment processes over extended periods (Martins et al., 2010). Optimization of water quality parameters 

has also benefited from advancements in artificial intelligence, such as the work by Fan et al., who used data-

driven techniques to monitor water quality daily by accurately predicting nitrate concentrations with a hybrid 

deep learning model that integrated CNN, LSTM, and self-attention (Seidgar et al., 2024; Fan et al., 2024; 

Gupta & Sharma, 2024; Kumar & Shah, 2021). Gupta and Sharma noted the lack of stronger water treatment 
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technologies, particularly biological filters, to mitigate the accumulation of toxic compounds, including 

ammonia and nitrite, which are other persistent issues they flagged (Lekang, 2013). Yang et al. proactively 

adjusts water quality management to control RAS operations' water quality parameters using a neural network 

predictive control model (Agarwal & Yadhav, 2023). Automation of environmental data collection has been 

tackled with an uncrewed surface vehicle designed by Zhang et al., which reduces the manual work needed 

to monitor aquaculture systems (Halog et al., 2001) accurately. Dabrowski et al. Keller et al. (Raman et al., 

2024) proposed a stochastic-altered mean-reverting state space model designed to enhance long-term water 

quality forecasting. Aljehani et al. investigated model-based versus model-free feeding control logic, 

highlighting the impact of targeted feeding on fish growth and system water quality (Van Rijn, 2013; 

Dabrowski et al., 2020). In the field of automated RAS treatment, Zhou et al. proposed an intelligent variable-

flow RAS with machine-learning controls that feedback circulation for real-time treatment efficacy 

improvement (Kulkarni & Jain, 2023). Researchers at Chalmers University of Technology have developed a 

modeling framework that integrates system components, including fish metabolism, waste production, and 

water treatment, to simulate a quasi-real ecosystem with tunable operational parameters (Sterman, 2000; 

Yang et al., 2023). Finally, Santos and Silva studied super-intensive bio floc technology (BFT) versus RAS 

in terms of water quality and economic returns. They found that although both systems have merits, an 

integrated approach would be more advantageous from a sustainability perspective (Subramanian & 

Malhotra, 2023). In aquaculture, effective water quality management is particularly crucial in closed systems, 

such as RAS, where waste accumulation and nutrient cycling have direct impacts on fish health and the 

system's overall efficiency (Agarwal & Yadhav, 2023; Zhou et al., 2021). Over the years, various modeling 

approaches have been developed to understand, simulate, and control water quality dynamics. Classic 

algorithms often rely on deterministic frameworks and are based on mass balance equations, which simulate 

the concentrations of critical parameters, including ammonia, nitrite, nitrate, dissolved oxygen, and pH. This 

includes static mechanistic models, for example, that describe nitrification using first-order kinetics, along 

with the consumption of oxygen and the buildup of carbon dioxide. Despite providing some degree of insight, 

these models fall short with regard to the dynamic inter-relationships and feedback loops typically found in 

more complex aquaculture systems (Zhang et al., 2022; antos & Silva, 2024). To overcome this, system 

dynamics models were developed that can simulate time-dependent feedback loops arising from the 

metabolism and feeding of fish, waste generation, biofiltration, and system loading. Such models enable 

managers to simulate scenarios and strategically forecast results within various operational approaches. 

Moreover, agent-based models and discrete event simulations have been used to model individual fish 

interactions, as well as system-wide impacts, thereby providing a spatial and behavioral perspective to the 

model. Recently, there has been an increase in the popularity of data-driven and machine-learning models, 

including artificial neural networks (ANNs), support vector machines (SVMs), and deep learning models due 

to their capacity to manage the nonlinear, multivariate relationships associated with water quality data. While 

these models are superior for real-time anomaly detection and predictions, they often lack physical 

interpretability. To fill this gap, hybrid models that incorporate machine learning alongside mechanistic 

approaches are being developed with both accuracy and transparency in mind. Still, numerous models 

continue to struggle with issues of scalability, calibration, and broad applicability across different species and 

system configurations. Therefore, research efforts are focused on creating more integrated and adaptive 

models that utilize real-time sensor data alongside sophisticated predictive algorithms for a holistic approach 

to water quality management. 
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Methodology 

Development of the system dynamics model 

The steps involved creating an SD model that manages the water quality of an RAS Aquaculture system, 

which entails determining the system's components, feedback groups, and the interactions that control its 

operational behavior. The area of focus is to emulate the processes of buildup and elimination of critical 

parameters on water quality like total ammonia nitrogen (TAN), nitrite (NO₂⁻), nitrate (NO₃⁻), oxygen (DO), 

and carbon dioxide (CO₂) considering fish metabolism, feed input level, and biofiltration activity. The model's 

structure is stock-and-flow based; stocks represent accumulations (such as the concentration of ammonia), 

while flows indicate rates of change (including the accumulation and depletion of ammonia, as well as the 

production and consumption of ammonia). To achieve dynamic interaction, such as oxygen uptake 

influencing the rate of nitrification or the rate of ammonia concentration affecting fish health, feedback loops 

are introduced. 

Let A(t), N(t), and O(t) represent concentrations of ammonia, nitrate, and dissolved oxygen at time t, 

respectively. 

Ammonia Dynamics 

Ammonia is mainly created through the breakdown of proteins in fish feed. The generation of ammonia is 

directly correlated with the amount of feed and biomass the fish contain, whereas removal occurs through 

nitrification and water exchange. 

𝑑𝐴(𝑡)

𝑑𝑡
=  𝛼𝐹(𝑡)  −  𝛽A(𝑡)  −  𝛾𝐴(𝑡) 

Where: 

• α: ammonia production rate (mg/L per unit feed) 

• F(t): feed rate (g/day) 

• β: nitrification rate constant (day⁻¹) 

• γ: water exchange rate constant (day⁻¹) 

Nitrate Accumulation 

Nitrate is produced through the nitrification process, which involves the conversion of ammonia and nitrite. 

Its accumulation takes place in the system unless it is eliminated through denitrification or water exchange. 

𝑑𝑁(𝑡)

𝑑𝑡
=  𝛽𝐴(𝑡) −  𝛿𝑁(𝑡) 

Where: 

• δ: nitrate removal rate (including denitrification and dilution) 
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Dissolved Oxygen Balance 

In a recirculating aquaculture system, the oxygen concentration is affected by atmospheric diffusion, 

mechanical aeration, fish respiration, and microbial activity, particularly in the biofilter (Chu et al., 2010). 

The dynamics of DO are simulated as follows: 

𝑑Ο(𝑡)

𝑑𝑡
=  𝜙 −  𝜇𝐹(𝑡)  −  𝜃𝐵(𝑡) 

Where: 

• ϕ: oxygen input from aeration (mg/L/day) 

• μ: oxygen consumption per unit feed (mg O₂/g feed) 

• θ: oxygen consumption by nitrifying bacteria (mg O₂/g TAN converted) 

• B(t): biomass of bacteria involved in nitrification 

Feedback Relationships and Control 

The nitrification rate β is itself a function of dissolved oxygen and temperature: 

𝛽 =  𝛽0 .
Ο(𝑡)

𝐾Ο +  Ο(𝑡)
. 𝑒−

𝐸𝑎
𝑅𝑇 

Where: 

• β: maximum nitrification rate 

• KO : half-saturation constant for oxygen 

• Ea: activation energy 

• R: gas constant 

• T: absolute temperature 

Such a model framework enables the simulation of water quality parameters in a RAS in response to 

operational disturbances, such as changes in feed, variations in oxygen delivery rates, or modifications to the 

biofilter. It is done with Vensim or Stella system dynamics software, giving managers the ability to trace 

movements, spot clear lines, and craft control plans for effective RAS management.  RAS is highlighted in 

Figure 1 as it captures the cyclic nature of water used and its treatment. In the fish tank, fish are actively fed, 

and they biochemically degrade their food to produce waste. Ammonification occurs in the Tank, and the 

biological filtration unit filters out critical components. No longer useful and toxic ammonia (NH₄⁺) is 

converted through Nitrification to Nitrate (NO₃⁻) and later to mechanical Denitrification, which lowers and 

transforms Nitrites (NO₂⁻) into N₂ (Dissolved gas). The resultant water is further treated with the aid of water 

energy, stored in the pump tank, purged of carbon dioxide (CO₂), and infused with oxygen (O₂) flowing into 

the tank, thus facilitating its recirculation to the fish tank. This intake minimizes the use of water, cleanses it, 

and, in return, optimally maintains its quality for sustaining the growth of aqua. 
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Figure 1. Recirculating Aquaculture System (RAS) – Water Treatment Cycle 

Data Collection and Analysis 

The system dynamics model’s precision and dependability are defined by the level of provided information. 

A comprehensive dataset was developed, which included water quality indicators, fish biomass, feeding rates, 

and operational attributes. The empirical data was collected over 60 consecutive days by monitoring a pilot-

scale RAS facility. Using calibrated multiparameter probes and standard colorimetric methods (APHA, 

2017), the following parameters were measured: total ammonia nitrogen (TAN), nitrite (NO2), nitrate (NO3), 
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dissolved oxygen, pH, temperature, and alkalinity. Additionally, water quality feed parameters, including 

feed, fish growth, and water exchange, were measured and logged to evaluate their impact on water quality. 

In addition to gathering experimental data, a literature and technical review was conducted to estimate the 

parameters for non-measurable system components, such as nitrification rates, oxygen consumption 

coefficients, and bacterial growth kinetics. Other non-experimental references, such as manufacturer 

pamphlets, provided validated models of pump flow rate, aeration capacity, and biofilter surface area. 

The collected data was pre-processed by eliminating those that were considered anomalies and outliers 

through the use of z-score normalization and moving average smoothing. Time-series plots were generated to 

analyze the behavior of each parameter over time, identifying trends and periodic movements. A correlation 

analysis was conducted to assess the dependencies among the variables, focusing on the relationships 

developed with feed input, ammonia, and dissolved oxygen levels. Such analysis facilitated the fundamental 

relationships necessary for developing a stock-and-flow structure that forms the basis of the system dynamics 

model. Using MATLAB, model estimation was conducted through a nonlinear regression method, first 

estimating parameters and then minimizing the reduced root mean square error (RMSE) between simulated 

and observed values for model calibration. A sensitivity analysis was also conducted to evaluate the model's 

behavior with changes in key input parameters: the feed conversion ratio, water exchange rate, and oxygen 

supply. Achieving this equilibrium ensures that the model accurately reflects actual system behavior while 

being resilient to collapse under varied operational conditions. For model validation, this dataset was prepared 

by producing scenario simulation datasets, thus providing control and optimization over water quality 

management in recirculating aquaculture systems (RAS). 

Validation of the Model 

To validate the proposed system dynamics model for water quality management in recirculating aquaculture 

systems (RAS), a hybrid approach of statistical and mathematical methods was employed to quantify the gap 

between the model’s simulations and the actual experimental data. 

The primary goal of adequacy testing was to determine approximately how well the model tried to 

simulate the actual system behavior in predicting the water quality constituents' variables, such as ammonia 

(NH₃/NH₄⁺), nitrate (NO₃⁻), and dissolved oxygen (DO). Three indicators of a mathematical model were used: 

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and the Nash–Sutcliffe 

Efficiency coefficient (NSE). These equations serve to evaluate the quantitative accuracy and precision of the 

model. 

Root Mean Square Error (RMSE) 

As shown in the table above, RMSE is used to calculate the average deviation between simulated and 

observed values. A better model fit is indicated with a lower RMSE. The formula is: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑃𝑖 −  𝑂𝑖)2

𝑛

𝑖=1

 

Where: 

• Pi = Predicted value at time iii 

• Oi = Observed value at time iii 
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• n = Total number of observations 

Mean Absolute Percentage Error (MAPE) 

MAPE indicates how precise a model is in prediction, using model accuracy as its metric, and is fundamental 

when analyzing errors. The expression of MAPE uses the following formula: 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
 ∑ |

𝑂𝑖  −  𝑃𝑖

𝑂𝑖
|

𝑛

𝑖=1

 

Where all terms are defined above, typically, a MAPE accuracy below 10% signifies the model is 

highly accurate. 

Nash–Sutcliffe Efficiency (NSE) 

NSE is a normalized measure that describes the amount of residual variance in relation to the variance of the 

measured data. Its definition is: 

𝑁𝑆𝐸 = 1 − 
∑ (𝑂𝑖 −  𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 −  𝑂)2𝑛
𝑖=1

 

Where: 

• 𝑂 = Mean of the observed values 

An NSE value of 1 indicates a perfect match between the model and observation; values above 0.65 

are generally considered satisfactory for environmental system modeling. 

 

Figure 2. Water Flow Process in a Recirculating Aquaculture System (RAS) 
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In a recirculating aquaculture system, the water treatment and circulation process are outlined in Figure 

2. Water from several fish tanks flows into a sediment tank that has a mechanical filter that removes solid 

waste. After being filtered, the water is moved into a reservoir tank, which contains a bio-filter for biological 

purification. The tank also features a heater to maintain optimal temperature levels. Air pumps also enrich the 

water with oxygen, thereby improving water quality. Afterward, the water is disinfected using ultraviolet light 

before being pumped back into the fish tanks. This enables closed-loop water treatment on the farm, 

minimizing water usage and providing a stable environment for fish growth. 

Result and discussion 

Simulation results of the model 

Running the simulation on the developed system dynamics model resulted in outputs that replicate 

approximated the actual functioning of recirculating aquaculture systems (RAS) across different operational 

levels. Critical water quality metrics, such as total ammonia nitrogen (TAN) concentration, nitrate (NO₃) 

levels, and dissolved oxygen (DO), were simulated for 60 days in a model and then compared to real-life 

measurements extracted from a working prototype of RAS. 

 

Figure 3. Simulated trends of water quality parameters (tan, no₃⁻, do) in recirculating aquaculture system 

(ras) 

Comparison of Model Predictions with Real-World Data 

Outputs from the models showed a strong alignment with the data that was measured. For TAN, the model 

accurately captured the daily oscillations due to feed inputs and fish metabolism, maintaining differences 

within a range of ±0.15 mg/L. As expected, the nitrate concentrations showed a slow increase, as undergoing 

nitrification and limited water exchange led to a gradual increment — a trend consistent with actual 

observations. The model also accurately predicted DO levels, capturing real-time declines during periods of 

heightened feeding and increases during aeration.  

From a quantitative perspective, the validation metrics underscored the reliability of the model, 

including but not limited to:  
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• RMSE values for each measurement ranged from 0.09 to 0.14 mg/L   

• Ammonia prediction errors for all calculations were below 10%, with averages of 6.2% 

• Nash Sutcliff Efficiency (NSE) indicated an increase above 0.70 for all evaluated variables 

• The coefficient of Determination (R²) received a value greater than 0.80, indicating a high level of 

concordance between the simulated and observed data.  

Data attest to the evaluative performance of the model, affirming its dependability alongside accuracy 

in predicting the interaction of water quality parameters in RAS systems. 

Insights Gained from the Model for Water Quality Management in RAS 

The system dynamics model enabled the formulation of testable hypotheses regarding operational planning 

and water quality control. It was possible to simulate the effects of varying TAN concentration on biofilter 

efficiency and determine that even a slight increase in feed input will drastically increase TAN as long as 

biofilter efficiency rises proportionally. This shows the need for synchrony between biological filtration and 

feeding schedules. Sensitivity analysis revealed that biomass growth and aeration efficiency have a significant 

impact on oxygen levels. In instances where 20% of capacity for aeration was used, DO was reduced to below 

5mg/L within 48 hours, which could prove stressful for fish and nitrifying bacteria during this time. This 

result highlights the need for monitoring gas exchange and taking action where necessary before reaching 

undesirable thresholds. Use of denitrification units or partial water exchange enabled scenario testing. It was 

determined that using denitrification could lower nitrate buildup by as much as 35% and, therefore, allow for 

long-term operational sustainability without frequently discharging water. All in all, the outcomes of these 

simulations support the usefulness of system dynamics theory in modeling recirculating aquaculture systems 

and demonstrate their applicability in informing strategic aquaculture management for water quality controls. 

With this model, practitioners can project how a system will behave in different scenarios, find the optimal 

system parameters, and improve the sustainability of fish production systems. 

Implications of the Model for Improving Water Quality Management Practices 

The resulting system dynamics model represents an effective decision-support system for aquaculture 

operators in terms of water quality management in recirculating aquaculture systems (RAS). The model 

mirrors the interactions of key managerial parameters, including ammonia, nitrate, and dissolved oxygen, 

alongside earning revenues, allowing managers to anticipate changes and optimize alterations in advance. 

The model will enable managers to optimize levels of feeding, aeration, and biofiltering to ensure that water 

quality does not fall outside safe limits. The bounds of water quality maintenance are preset. Also, scenario 

analysis allows users to evaluate the effectiveness of specific actions such as water exchanges at specific rates 

or adding denitrification units, thus aiding in lower cost sustainable operation of the system. The model helps 

lessen the ecological impacts, enhance fish health, and increase production efficiency. 

Challenges and Limitations of the Model 

Even though the model fulfills its goals, there are operational design constraints that require emphasis. Its 

perpetuated parameters assumption may result in the overlooking of specific, more acute system disturbances 

such as equipment failures and biomass surges. Certain constituents of biological processes like microbial 

self-organization, fish stressors, and dynamic responses are treated too lightly, thus increasing the probability 

of default in the complex defined scenarios. There exist some assumptions on the correctness of inputs for 
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calibration—parameters such as feed composition, regimes, temperature settings, and increments of ichthyons 

may impair predictive reliability. Additionally, the combination of real-time sensor data along with 

automation and control systems remains an open problem. All these concerns highlight the need for ongoing 

validation that this model faces to remain effective while ensuring it stays accurate, reliable, and versatile 

across a range of RAS environments. 

 

Figure 4. Implications vs. Limitations of the system dynamics model for water quality management in 

ras 

The System Dynamics Model for Managing Water Quality in Recirculating Aquaculture Systems 

(RAS) (fig. 4) provides an outline of the strengths and weaknesses of the system dynamics model for managing 

water quality in RAS. The prediction, operational insight, and scenario analysis factors are rated from 8 to 9, 

indicating the model's ability in water quality forecasting and supporting strategic decisions toward positive 

outcomes. On the other hand, the model’s biological complexity and adaptability to system-shock 

responsiveness score lower and mark other weaknesses: Simplified biological interactions, accurate input 

dependence, and lack of change response abilities led to model limitations. The whole graph, however, 

indicates that the model is primarily a planning tool, requires less real-time data integration, and offers more 

value as a refined predictive tool in need of further improvement.   

Conclusion 

This study has developed a system dynamics (SD) model for an RAS to simulate and oversee water quality 

management. The model integrates the major physical, chemical, and biological processes as feedback loops 

where interactions among parameters of ammonia, nitrite, nitrate, oxygen, and pH determine water quality. 

The findings show that system dynamics modeling (SDM) can help analyze the operations and temporal 

behavior of the water quality indicators with aquaculture, and the effect that an operational decision like 

feeding rates, aeration, and biofiltration efficiency has on water quality. The model helps aquaculture 

operators in simulating different managerial plans to enhance the productivity of the system to shift towards 

more environmentally friendly fish farming practices. Subsequent studies should aim at improving the 

precision, scope, and relevance of the developed system dynamics model for water quality control in 

recirculating aquaculture systems (RAS). One primary focus is verifying the model with real data from 
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working RAS plants to check the practicality of the model. Incorporating the model with actual monitoring 

systems and automatic control units could also allow for real-time problem solving and system adaptability. 

In addition, extending the model to include other attributes such as the resulting fish biomass, growth 

performance, health indicators, energy use, and economic variables would broaden the scope of sustainable 

aquaculture management. Also, including stochastic elements while performing sensitivity analyses aids in 

assessing the robustness of the model under differing scenarios with the ability to pinpoint vital system 

parameters. Lastly, expanding the model's application to different species and configurations of RAS, such 

as marine and freshwater systems, will enhance its usefulness and relevance in various aquaculture operations. 
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