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Abstract

Ensemble learning methods combined with remote sensing data can optimize yield forecasting and provide
real-time insights for decision-making. In predictive agriculture, having predictive accuracy over crop yield
is essential for managing food security and adapting to climate change. This study aims to integrate satellite
remote sensing data into agro-climatic region farms for yield prediction using machine learning with the
Random Forest algorithm. The implementation approach utilizes MODIS and Sentinel 2 satellites, which
provide multispectral imagery and NDVI/EVI estimates in conjunction with Precipitation data, Land
Surface Temperature, and altimetry data. Supervised learning occurred in the training phase, requiring
historical crop yield datasets sequentially divided into train/test datasets. During the validation phase,
accuracy was according to relevance metrics established by R in conjunction with RMSE and MAE. A
performance evaluation was conducted on the other baseline models, SVR and linear regression, and
improved accuracy performance was showcased when utilizing random forest. The results have
demonstrated the significance of applying ensemble learning techniques augmented with remote sensing
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data towards operational crop yield forecasting. This work strengthens the remote sensing technology for
precision agriculture by developing an Earth observation-based yield estimating methodology that is
observable, scalable, and straightforward.
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Introduction

An anticipated population increase to 10 billion by the year 2050 will, without a doubt, escalate the demand
for food production. The expectation of sustainably meeting this need will require significant advancements
in agricultural productivity that rely on effective crop management. The predictive agriculture industry has
benefited from developments in artificial intelligence (Al) technologies as crop yield forecasting has become
one of the primary focuse of innovation. Crop forecasting is a critical asset to all stakeholders, from
policymakers to farmers, as they can strategically plan and utilize resources more efficiently. These yield
forecasts promptly improve cost-calculation precision concerning water, fertilizers, labor, and other valuable
resources while also saving the environment. Governments and international bodies also depend on such data
to foresee a looming crisis, strategically directing global resources towards anticipating food scarcity,
determining strategic import-export policies, and bolstering food security initiatives (Khaki et al., 2022).
Static historical data, dependence on extrapolated expertise, lack of accommodating dynamic soil weather
interplay, and neglecting soil conditions alongside crop physiology are often the reasons traditional prediction
methods are flawed. Exploring new multidisciplinary models with a range of up-to-the-minute data and
computational intelligence suited for multivariate calculus algorithms is imperative to eliminate the use of
such invasive historical data (Booch et al., 2025).

Agricultural Imperatives

Crop yield forecasting plays a critical role in the context of sustainable agriculture. With set yield predictions,
there is improved efficiency regarding resource management, which helps optimize labor scheduling, irrigation
planning, and fertilization activities. This helps enhance productivity and economic profitability, and reduces
environmental impact from inputs (Jagadeeswaran et al., 2022). At a broader level, crop yield predictions are
also important from the perspective of national and global food security. Irrespective of the reason, if there are
disruptions in food supply, such as droughts, floods, or pest outbreaks, the agriculture and food markets are
susceptible to sharp price increases and the potential for food shortages (Mustapha et al., 2016). Furthermore,
climate change issues pose an even larger problem by increasing the intensity and occurrence of extreme
weather, making traditional methods for yield variability forecasting unreliable (Kamangir et al., 2024). For
dependable food production systems, farmer income stability, effective governmental policies, and responsive
agricultural policies, developing prediction systems capable of integrating environmental dynamics is vital to
ensure adaptability (Asgari-Motlagh et al., 2019).

Sensing the Landscape

The development of remote sensing technologies has transformed the observation of agriculture by allowing
for extensive and continuous monitoring of crops and their surroundings without having to conduct fieldwork.
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Satellite sensors like Sentinel-2, MODIS, and Landsat take images in multiple spectral bands and provide
important information about vegetation, soil moisture, and land surface temperature (Shen et al., 2024). This
information calculates vegetation indices such as NDVI and EVI, which act as consistent proxies for crop
biomass and photosynthetic activity. With these indices, the spatial and temporal dynamics of crop yields can
be monitored, and the occurrence of stress factors that reduce yield potential, like water shortage, nutrient
deficiency, or pest infestation, can be detected early (Ahmed, 2019). The ability to frequently monitor huge
expanses of farmland objectively makes remote sensing superior to traditional methods that rely on ground
observations, especially in places where infrastructure for data collection is lacking. Moreover, remote
sensing in conjunction with data acquired from truthing improves the degree of yield predictions and
agricultural management decision-making through better model calibration and validation.

Computational Insights

The biological and environmental intricacies associated with the nonlinear processes involved in crop growth
destabilize any statistical model constructed to predict yield. However, machine learning algorithms,
specifically ensemble approaches like Random Forests, handle such intricacies much more easily (Tugag et
al., 2022). Random Forests create a set of decision trees from random subsets of data and variables, then boost
their output by aggregating their results towards credibility through diminishing overfitting. This technique
utilizes weather variables such as temperature and precipitation as well as soil characteristics alongside
spectral indices garnered from remote sensing, which results in high dimensional datasets with complex
interrelationships having wide-ranging applicability Also, Random Forests permit evaluation of how features
rank in terms of importance relevance which improves model reliability and helps scientists explain the
different processes affecting crop yields. Unlike standard regression models, Random Forests provides some
protection against irrelevant information and permissive and consistent construction of accurate and
trustworthy crop yield models within complex, data rich agriculture systems (Peng et al., 2025).

Integrative Approach

Incorporating remote sensing datasets with meteorological data and advanced machine learning techniques
into a remote sensing framework promotes the precision agricultural yield forecasting by enhancing its
predictive accuracy. As with any model, feature selection, dataset cleaning, and merging are pivotal and are
given special emphasis in this situation. The resultant crop yields from the dataset are used to build a model
using the Random Forest algorithm. Validation using independent test sets and robust cross-validation
supports validation by multiple tellable model evaluation techniques, which will form adequate model
assessment (Ali & Bilal, 2025). The model is intended to be both scalable and customizable for diverse crops,
regions, and varying agroecological zones. The model's design enables easy adaptability and scalability across
various crops and regions. Such a remote sensing framework that employs climate information and freely
accessible satellite images is readily usable in regions with scant resources. Stakeholders will be able to
enhance food security while effectively managing risks emerging from changes in environmental conditions,
and fundamentally, these will enable precision agriculture on a broader scale that will be advanced by
expectations developed from these findings (Giji Kiruba et al., 2023).

Key Contribution:

e The research utilizes satellite imagery (MODIS; Sentinel-2) in conjunction with meteorological data
and employs a machine learning algorithm (Random Forest) to accurately predict crop yields in
different agroclimatic zones.
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e To yield better results in predicting forecast variables, advanced data preprocessing (cloud filtering,
NDVI smoothing) was applied in conjunction with dimensionality reduction methods (RFE and
Mutual Information).

e Based on the R? metrics evaluation, the new Random Forest model outperformed all baseline models
(Linear Regression, SVR, MLP, XGBoost) with an R? score of 0.91, which denotes consistent
dependability and precision for the model.

e The developed framework for predicting yield is tailored for a specific purpose. It is cost-efficient and
reliable, supports different regions and crops, and sustains adaptive decision-making frameworks in

precision agriculture.

The paper shows how Section 1 provides the Introduction, which discusses why accurate crop yield
prediction is essential, considering reasons and problems encountered in different agro-climatic zones.
Section 2 covers Related Works, focusing on prior studies that utilized remote sensing data and machine
learning models within agricultural applications. Section 3 provides the Methodology, which contains data
sources: MODIS, Sentinel 2, and meteorological data, as well as associated preprocessing steps, feature
extraction, and the building of the Random Forest prediction model. Conclusions are given in section 5, which
highlights the main contributions, presents the findings, outlines the limitations, and discusses suggestions
for further enhancements. Section 4 provides Results and Discussion, which focus on the assessment of the
model, comparison with baseline models, and other practical implications.

Related Works

Integrating remote sensing data with machine learning approaches has automated and improved forecasting
for crop yields. No matter how small, crop features can now be associated with performance due to high-
resolution satellite imagery such as MODIS and Landsat NDVI. One of the studies states that these datasets,
alongside machine learning models SVM and Multilayer Perceptron, achieved better performance than the
conventional regression-based approach. Transforming non-linear functions defined in terms of empirical
indices of vegetation enables the systems to outperform environmental condition outcome predictions in
baseline environment prediction accuracy under diverse settings. UAV-based multispectral imaging
contributes to enhanced spatial resolution in agricultural monitoring, which becomes even more powerful when
coupled with robust learning algorithms (Chaitra & Kumar, 2025).

Deep learning and ensemble techniques have recently drawn attention in the context of research
related to crop modeling. The implementation of Ensembles that integrates SAR imagery, optical satellite
imaging, and meteorological time-series data has been reported to perform the best due to its generalization
capability across various datasets (Shen et al., 2024; Saiful & Wibisono, 2025). In rice yield estimation, one
of the models, named RicEns-Net, employed a deep neural architecture and integrated these heterogeneous
inputs, resulting in low mean absolute error and high R? values. At the same time, salient feature recognition
has brought convolutional neural networks (CNN) into temporal environmental and phenology inputs to
recognize them at various levels of hierarchical structures (Srivastava et al., 2022). These models have been
particularly useful in addressing the nonlinearity and seasonality associated with agricultural systems,
outperforming many other machine learning techniques through rigorous testing (Yewle et al., 2025).

There is also an emerging focus on new algorithmic infrastructures to improve interpretability and
accuracy in yield forecasting. A CC management integrated vision transformer (CMAViT) was created to
unify climate management practices and remote sensing data (Siti & Ali, 2025). This increased the precision
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of the predictions made in the vineyard case studies and elucidated the most important data streams toward
the estimates provided. Other researchers have assessed the performance of graph neural networks (GNNs)
with recurrent components for spatial crop forecasting at the county level, showing their capability for
meaningful integration of spatio-temporal patterns. These advances mark a change toward more sophisticated,
data-driven models that strengthen the predictive and decision aiding functionalities required in agricultural
planning (Fan et al., 2022).

Due to its application in predictive analytics for agriculture, the Random Forest (RF) model is popular
for its simplicity and robustness concerning overfitting. In one case study, a self-training RF algorithm
coupled with a semi-supervised learning approach was used to predict winter wheat yields, which allowed
the model to be trained with very few labeled data points (Veerasamy & Fredrik, 2023). The model attained
high accuracy metrics while being generalizable across zones with different climate conditions and types of
soil [19]. In addition, the regional implementations of RF models like those from Australia show consistent
performance improvement when NDVI and other environmental factors are integrated as input features
(Karimov & Bobur, 2024). These results highlight the model's adaptability to various agroecological regions
and its importance for operational yield forecasting systems.

The use of comparative studies in machine learning helps elucidate algorithms' inefficiency when
faced with varying input data structures and differing predicted outcomes (Sreenivasu et al., 2022). Random
Forest and XGBoost are two models that have received the most attention in this field, with Random Forest
almost always demonstrating greater generalization and robustness relative to the other models, particularly
for noisy or imbalanced datasets (Lakshmi et al., 2023). Recently, a comparative study found that RF
outperformed the R? values and achieved lower error rates than the rest of the competitors in wheat yield
prediction tasks. Moreover, adding crop simulation models to deep learning architectures like CNNs and
DNN s has resulted in hybrid systems that exploit physics-based reasoning and data-driven learning (Zhao et
al., 2022). Such hybrid systems have reported some of the lowest error rates, highlighting the efficacy of
integrating deep physical modeling with artificial intelligence for agricultural forecasting.

Methodology

This study integrates remote sensing features with supervised machine techniques, classifying them into
training and test subsets for a supervised learning framework, to systematically forecast crop yields.
Meteorological features, such as vegetation indices NDVI and EVI, provide timely, spatially coherent
information on the state of crops. At the same time, weather data contains key insights on environmental
conditions beneficial for growth and forms a component of the composite model. The data from satellite and
ground monitoring systems, coupled with VAD and state estimators (or observational function), provide a
multidimensional dataset capable of addressing diverse spatial prediction tasks. Numerous methodological
steps were taken to implement a sophisticated system: data collection from satellite and ground-based sources,
data cleaning and normalization, feature relevance, and application of the random forest regression algorithm.
Monte Carlo validation and advanced statistical methodology assured dependability of the outcomes, including
thorough parameter tuning and cross-validation to assure robustness and generalizability of the findings. Each
stage is outlined below in detail.

Data Collection and Preprocessing

This study's crop yield forecasting data are obtained from a fusion of remote sensing satellites and
meteorological databases. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation
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Index (EVI) derived from MODIS and Landsat 8 images were used. These indices are important indicators,
especially aids of crop health and biomass, and were collected during various stages of crop growth, including
sowing, vegetative growth, flowering, and maturation. NASA POWER provided temperature, rainfall,
humidity, and solar radiation data as meteorological parameters, and local weather station data where
available were used for verification. Ground-truth yield data specific to certain crop types and growing
seasons were collected from agricultural surveys and district-level crop reporting documents. A coherent
analysis system structured these datasets within a singular, unified temporal and spatial paradigm.

To prepare the dataset for modeling, several data cleaning processes were performed. Satellite data
was pre-processed qualitatively to eliminate the cloud cover noise, while the QA band was functioning. Gaps
and Seasonal Variation in Smoothing Series were minimized through Savitzky-Golay smoothing of the
vegetation index time series. For the other meteorological datasets, gaps were filled with KNN based on
temporally and spatially close records values. All Variable were transformed to reflect a scale of 0 to 1 using
Min-Max scaling ensuring all feasible values were standardized and optimization with different machine
learning models was guaranteed without bias on the distinct magnitude of each variable. Simultaneously, the
NDVI and EVI values were adjusted according to the crop calendar to track the active growth phase that has
consequences on yield potential.

__ (NIR+RED)
NDVI = (NIR—RED) 1)

In Equation (1),
NIR -Near-infrared reflectance
RED -Red reflectance.

In this case equation 1, NIR indicates the light reflected in the near-infrared spectrum strongly
reflected by healthy vegetation and RED indicates the light absorbed in the red spectrum plants use during
photosynthesis. As mentioned, NDVI index ranges from -1 to +1, where values closer to +1 show vigorous
and healthy vegetation. In contrast, near or below zero values indicate barren land, water bodies, or even
crops under stress. This simple index allows quantifying the plants' growth conditions temporally and
spatially, which is why it becomes a vital input variable in this study's crop yield prediction model.

Dimensionality Reduction and Predictor Optimization

The selection of pertinent variables from the ever-growing volumes of agricultural and remote sensing data
is fundamental to constructing an efficient and accurate predictive model. In this research, the initial dataset
consisted of predictors obtained from satellite images and meteorological data including NDVI, EVI, rainfall
and temperature averages, and solar radiation, among others. Additionally, some indices were also calculated
such as SMI and GDD. Contemporaneous data collection from various crop growth stages may lead to
multicollinearity and overfitting. A hybrid approach integrating filtering, wrapper, and embedded techniques
for dimensionality reduction and predictor optimization was implemented to overcome these challenges.

The filtering step required calculating the Pearson correlation coefficients for all the feature pairs and
removing features with high correlation (r >0.9). Subsequently, Recursive Feature Elimination (RFE) with a
Random Forest regressor was applied to iteratively prune the features with the least effect on model accuracy.
The last selection was enhanced by the mean decrease in impurity (MDI) derived from the trained Random
Forest model where the features were ranked based on the value of node sharpening they provided during tree
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splitting. The final predictor set consisted of time-specific NDVI and EVI values, seasonal cumulative rainfall,
mid-season temperature, NDWI, and vegetation dynamics measures. These variables were statistically
significant and agronomically beneficial, which meant that the model was built to adjust using factors that
explained the variation in crop yields.

Yield Map
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Figure 1. Flowchart of regional crop yield estimation framework using integrated data and crop simulation
models

As presented in figure 1, a flowchart integrates remote sensing, climate data, and GIS systems to
establish “estimation of crop yield on a regional scale”. NDVI of the seasons, crop type, and crop-
management practices are classified along with weather data from climate models, weather stations (AWS),
and soil data from NBSSLUP. Based on these datasets, crop simulation models are executed to obtain yield
maps which are subsequently used to assess the regional crop yield. This orderly approach allows for
meticulous and informed agricultural planning as well as forecasting

Model Architecture and Learning Framework

The envisioned framework to predict crop yields incorporates historical yields data, weather data, soil
information, and management activities to create a holistic dataset that reflects the actual performance of
crops. Feature selection based on Mutual Information (MI) is applied to improve the model's performance
and reduce its complexity. This method captures the nonlinear impactof many features on the crop production
enabling selection of the best predictors to maximize value. After selecting the important features, the dataset
is divided into training and testing sets for model development and assessment. The primary predictive model
is Multilayer Stacked Ensemble Regression (MIFS-based) which comprises a series of regression models and
captures base learners' outputs to form a stacked model. This ensemble approach enhances the performance
by addressing the weaknesses of overfitting and high bias and variance from the individual models by
integrating the advantages of multiple regression algorithms. The model is assessed using Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R?), benchmarking
them to other regressive models. The framework is reported to have robust performance in precision
agriculture and food security when it achieves minimal MAE, minimal RMSE, and maximum.
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Figure 2. Overview of the crop yield prediction framework

Figure 2. demonstrates the general structure of the initiated framework for predicting crop yields. It
captures the merging of various agricultural datasets which is subsequently followed by the implementation of
feature selection using mutual information to find relevant predictors. The resulting dataset is then split into
training and testing subsets. The main prediction model is Ensemble Regression with Multilayer Stacking,
where an ensemble of base learners is used for precise yield estimations. Yield estimation proxies are calculated
with each model to measure performance, ensuring validation for prediction accuracy, model effectiveness,
and the ensemble’s strength through dominant model performance (MAE, RMSE, R?).

Model Training and Hyperparameter Tuning

The Random Forest regression model was trained to estimate the crop yields accurately. The dataset was
divided into training and testing sets using a 70:30 split with stratification to maintain representative
distributions of crop types and agro-climatic conditions within both subsets. The training process was
accomplished by creating an ensemble of decision trees, where each tree was constructed from bootstrapped
samples using feature subsets selected at random. The ensemble approach improves the model's reliability by
preventing overfitting and capturing, with greater accuracy, the complex nonlinear interactions among the
different variables that characterize agriculture and remote sensing data.

Using grid search and five-fold cross-validation on the training data offered significant
hyperparameter optimization. Important hyperparameters were set, including number of trees, maximum tree
depth, minimum samples per leaf, and number of features for consideration in splits. Focused optimization
was set on minimizing Root Mean Squared Error (RMSE) and maximizing R square, thus optimizing the
imbalance between bias and variance.
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Following the discovered hyperparameters, the model was rebuilt from scratch, with the complete
training dataset and an independent test set. Predictive accuracy evaluation used RMSE, Mean Absolute Error
(MAE), and R2. Regression baselines included: Linear Regression and Support Vector Regression, which
proved subpar regarding predictive accuracy and stability compared to the ensemble model of Random Forest,
showing their underscored value. This was mainly due to the ensemble's capability to model complex
nonlinear integrated remote sensing and meteorological data, confirming its reliability in monitoring
operational crop yield forecast.

Results and Discussion

The Random Forest model built in this study effectively predicted crop yield across various agro-climatic
areas. As noted, the evaluation scores from the independent test set show that the model does provide useful
information and high accuracy compared to the fixed baselines of Linear Regression and Support Vector
Regression which are weaker methods. These results are compiled in the table containing RMSE, MAE, and
R? for all the run models, including the baselines. These results demonstrate great value in using information
obtained from remote sensing data through machine learning due to the intricate non-linearities governing
crop yields.

Table 1. Qualitative performance summary of machine learning models

Model Accuracy Level | Error Rate | Generalization (R?) | Overall Performance
Linear Regression Low High Poor (0.60) Unsuitable

Support Vector Regression | Moderate Moderate Fair (0.70) Acceptable

Multilayer Perceptron Good Moderate Good (0.75) Competitive

XGBoost Very Good Low Strong (0.83) Highly Reliable
Proposed Random Forest | Excellent Very Low | Very Strong (0.91) Best Performing Model

Table 1 provides a qualitative overview of the performance metric scores from different machine
learning models designed for crop yield estimation. Achievements of The Proposed Random Forest model
surpasses others comprehensiveley equivocally in terms of accuracy, error rate, and generalization where it
scored R? = 0.91, hence deeming it the most reliable and best-performing model. XGBoost came in next
performing well and exhibiting strong generalization with low error thus making it a reliable alternative. The
Multilayer Perceptron does show reasonable accuracy and generalization placing it as a good contender. On
the other hand, Support Vector Regression does moderately well. At the same time, Linear Regression has
poor accuracy, loses predictive capability and is therefore unsuitable for even mildly sophisticated prediction
tasks such as estimating crop yield. This underscores the relevance of sophisticated ensemble models within
agricultural forecasting systems.
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Figure 3: Performance comparison of crop yield prediction models

In Figure 3, various machine learning algorithms capable of predicting crop yield were evaluated in
terms of accuracy using RMSE, MAE, and R? metrics. From the results, the Proposed Random Forest model
provided the best results since it achieved the least RMSE and MAE, and the highest R? value which innately
signifies good predictive powers. On the contrary, Linear Regression portrayed the worst results with the
boldest figure for errors and the least R?. The figure supports the claim that the Proposed Random Forest
model is indeed the best out of all tested models.

Conclusion

The research shows that using a Random Forest machine learning model for vegetation indices like NDVI and
EVI alongside other weather data enables preprocessed and feature selected satellite images to capture complex
nonlinear relationships associated with yield, improving crop yield prediction across variants of agro-climatic
regions. Also, by leveraging remote sensing information in tandem with meteorological variables, model
predicts crop yield proficiently capturing intricate complexities exacerbated by non-linear multi-layered
interactions of underlying dynamics. In addition, the Random Forest model was validated and compared with
other models including but not limited to: Linear Regression, Support Vector Regression, and XGBoost,
proving its superiority by yielding better results with less error, better generalization, and stronger accuracy.
This proves the merit of using Earth observation data combined with ensemble learning techniques to enhance
precision agriculture, bolster resource management sustainability, fortify food security, and streamline crop
yield prediction across different environmental settings.
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