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Abstract 

Ensemble learning methods combined with remote sensing data can optimize yield forecasting and provide 

real-time insights for decision-making. In predictive agriculture, having predictive accuracy over crop yield 

is essential for managing food security and adapting to climate change. This study aims to integrate satellite 

remote sensing data into agro-climatic region farms for yield prediction using machine learning with the 

Random Forest algorithm. The implementation approach utilizes MODIS and Sentinel 2 satellites, which 

provide multispectral imagery and NDVI/EVI estimates in conjunction with Precipitation data, Land 

Surface Temperature, and altimetry data. Supervised learning occurred in the training phase, requiring 

historical crop yield datasets sequentially divided into train/test datasets. During the validation phase, 

accuracy was according to relevance metrics established by R in conjunction with RMSE and MAE. A 

performance evaluation was conducted on the other baseline models, SVR and linear regression, and 

improved accuracy performance was showcased when utilizing random forest. The results have 

demonstrated the significance of applying ensemble learning techniques augmented with remote sensing 
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data towards operational crop yield forecasting. This work strengthens the remote sensing technology for 

precision agriculture by developing an Earth observation-based yield estimating methodology that is 

observable, scalable, and straightforward. 
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Introduction 

An anticipated population increase to 10 billion by the year 2050 will, without a doubt, escalate the demand 

for food production. The expectation of sustainably meeting this need will require significant advancements 

in agricultural productivity that rely on effective crop management. The predictive agriculture industry has 

benefited from developments in artificial intelligence (AI) technologies as crop yield forecasting has become 

one of the primary focuse of innovation. Crop forecasting is a critical asset to all stakeholders, from 

policymakers to farmers, as they can strategically plan and utilize resources more efficiently. These yield 

forecasts promptly improve cost-calculation precision concerning water, fertilizers, labor, and other valuable 

resources while also saving the environment. Governments and international bodies also depend on such data 

to foresee a looming crisis, strategically directing global resources towards anticipating food scarcity, 

determining strategic import-export policies, and bolstering food security initiatives (Khaki et al., 2022). 

Static historical data, dependence on extrapolated expertise, lack of accommodating dynamic soil weather 

interplay, and neglecting soil conditions alongside crop physiology are often the reasons traditional prediction 

methods are flawed. Exploring new multidisciplinary models with a range of up-to-the-minute data and 

computational intelligence suited for multivariate calculus algorithms is imperative to eliminate the use of 

such invasive historical data (Booch et al., 2025). 

Agricultural Imperatives 

Crop yield forecasting plays a critical role in the context of sustainable agriculture. With set yield predictions, 

there is improved efficiency regarding resource management, which helps optimize labor scheduling, irrigation 

planning, and fertilization activities. This helps enhance productivity and economic profitability, and reduces 

environmental impact from inputs (Jagadeeswaran et al., 2022). At a broader level, crop yield predictions are 

also important from the perspective of national and global food security. Irrespective of the reason, if there are 

disruptions in food supply, such as droughts, floods, or pest outbreaks, the agriculture and food markets are 

susceptible to sharp price increases and the potential for food shortages (Mustapha et al., 2016). Furthermore, 

climate change issues pose an even larger problem by increasing the intensity and occurrence of extreme 

weather, making traditional methods for yield variability forecasting unreliable (Kamangir et al., 2024). For 

dependable food production systems, farmer income stability, effective governmental policies, and responsive 

agricultural policies, developing prediction systems capable of integrating environmental dynamics is vital to 

ensure adaptability (Asgari-Motlagh et al., 2019). 

Sensing the Landscape 

The development of remote sensing technologies has transformed the observation of agriculture by allowing 

for extensive and continuous monitoring of crops and their surroundings without having to conduct fieldwork. 



  Natural and Engineering Sciences                              69 

 
Satellite sensors like Sentinel-2, MODIS, and Landsat take images in multiple spectral bands and provide 

important information about vegetation, soil moisture, and land surface temperature (Shen et al., 2024). This 

information calculates vegetation indices such as NDVI and EVI, which act as consistent proxies for crop 

biomass and photosynthetic activity. With these indices, the spatial and temporal dynamics of crop yields can 

be monitored, and the occurrence of stress factors that reduce yield potential, like water shortage, nutrient 

deficiency, or pest infestation, can be detected early (Ahmed, 2019). The ability to frequently monitor huge 

expanses of farmland objectively makes remote sensing superior to traditional methods that rely on ground 

observations, especially in places where infrastructure for data collection is lacking. Moreover, remote 

sensing in conjunction with data acquired from truthing improves the degree of yield predictions and 

agricultural management decision-making through better model calibration and validation. 

Computational Insights 

The biological and environmental intricacies associated with the nonlinear processes involved in crop growth 

destabilize any statistical model constructed to predict yield. However, machine learning algorithms, 

specifically ensemble approaches like Random Forests, handle such intricacies much more easily (Tuğaç et 

al., 2022). Random Forests create a set of decision trees from random subsets of data and variables, then boost 

their output by aggregating their results towards credibility through diminishing overfitting. This technique 

utilizes weather variables such as temperature and precipitation as well as soil characteristics alongside 

spectral indices garnered from remote sensing, which results in high dimensional datasets with complex 

interrelationships having wide-ranging applicability Also, Random Forests permit evaluation of how features 

rank in terms of importance relevance which improves model reliability and helps scientists explain the 

different processes affecting crop yields. Unlike standard regression models, Random Forests provides some 

protection against irrelevant information and permissive and consistent construction of accurate and 

trustworthy crop yield models within complex, data rich agriculture systems (Peng et al., 2025). 

Integrative Approach 

Incorporating remote sensing datasets with meteorological data and advanced machine learning techniques 

into a remote sensing framework promotes the precision agricultural yield forecasting by enhancing its 

predictive accuracy. As with any model, feature selection, dataset cleaning, and merging are pivotal and are 

given special emphasis in this situation. The resultant crop yields from the dataset are used to build a model 

using the Random Forest algorithm. Validation using independent test sets and robust cross-validation 

supports validation by multiple tellable model evaluation techniques, which will form adequate model 

assessment (Ali & Bilal, 2025). The model is intended to be both scalable and customizable for diverse crops, 

regions, and varying agroecological zones. The model's design enables easy adaptability and scalability across 

various crops and regions. Such a remote sensing framework that employs climate information and freely 

accessible satellite images is readily usable in regions with scant resources. Stakeholders will be able to 

enhance food security while effectively managing risks emerging from changes in environmental conditions, 

and fundamentally, these will enable precision agriculture on a broader scale that will be advanced by 

expectations developed from these findings (Giji Kiruba et al., 2023). 

Key Contribution: 

• The research utilizes satellite imagery (MODIS; Sentinel-2) in conjunction with meteorological data 

and employs a machine learning algorithm (Random Forest) to accurately predict crop yields in 

different agroclimatic zones. 
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• To yield better results in predicting forecast variables, advanced data preprocessing (cloud filtering, 

NDVI smoothing) was applied in conjunction with dimensionality reduction methods (RFE and 

Mutual Information). 

• Based on the R² metrics evaluation, the new Random Forest model outperformed all baseline models 

(Linear Regression, SVR, MLP, XGBoost) with an R² score of 0.91, which denotes consistent 

dependability and precision for the model. 

• The developed framework for predicting yield is tailored for a specific purpose. It is cost-efficient and 

reliable, supports different regions and crops, and sustains adaptive decision-making frameworks in 

precision agriculture. 

The paper shows how Section 1 provides the Introduction, which discusses why accurate crop yield 

prediction is essential, considering reasons and problems encountered in different agro-climatic zones. 

Section 2 covers Related Works, focusing on prior studies that utilized remote sensing data and machine 

learning models within agricultural applications. Section 3 provides the Methodology, which contains data 

sources: MODIS, Sentinel 2, and meteorological data, as well as associated preprocessing steps, feature 

extraction, and the building of the Random Forest prediction model. Conclusions are given in section 5, which 

highlights the main contributions, presents the findings, outlines the limitations, and discusses suggestions 

for further enhancements. Section 4 provides Results and Discussion, which focus on the assessment of the 

model, comparison with baseline models, and other practical implications. 

Related Works 

Integrating remote sensing data with machine learning approaches has automated and improved forecasting 

for crop yields. No matter how small, crop features can now be associated with performance due to high-

resolution satellite imagery such as MODIS and Landsat NDVI. One of the studies states that these datasets, 

alongside machine learning models SVM and Multilayer Perceptron, achieved better performance than the 

conventional regression-based approach. Transforming non-linear functions defined in terms of empirical 

indices of vegetation enables the systems to outperform environmental condition outcome predictions in 

baseline environment prediction accuracy under diverse settings. UAV-based multispectral imaging 

contributes to enhanced spatial resolution in agricultural monitoring, which becomes even more powerful when 

coupled with robust learning algorithms (Chaitra & Kumar, 2025). 

Deep learning and ensemble techniques have recently drawn attention in the context of research 

related to crop modeling. The implementation of Ensembles that integrates SAR imagery, optical satellite 

imaging, and meteorological time-series data has been reported to perform the best due to its generalization 

capability across various datasets (Shen et al., 2024; Saiful & Wibisono, 2025). In rice yield estimation, one 

of the models, named RicEns-Net, employed a deep neural architecture and integrated these heterogeneous 

inputs, resulting in low mean absolute error and high R² values. At the same time, salient feature recognition 

has brought convolutional neural networks (CNN) into temporal environmental and phenology inputs to 

recognize them at various levels of hierarchical structures (Srivastava et al., 2022). These models have been 

particularly useful in addressing the nonlinearity and seasonality associated with agricultural systems, 

outperforming many other machine learning techniques through rigorous testing (Yewle et al., 2025). 

There is also an emerging focus on new algorithmic infrastructures to improve interpretability and 

accuracy in yield forecasting. A CC management integrated vision transformer (CMAViT) was created to 

unify climate management practices and remote sensing data (Siti & Ali, 2025). This increased the precision 
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of the predictions made in the vineyard case studies and elucidated the most important data streams toward 

the estimates provided. Other researchers have assessed the performance of graph neural networks (GNNs) 

with recurrent components for spatial crop forecasting at the county level, showing their capability for 

meaningful integration of spatio-temporal patterns. These advances mark a change toward more sophisticated, 

data-driven models that strengthen the predictive and decision aiding functionalities required in agricultural 

planning (Fan et al., 2022). 

Due to its application in predictive analytics for agriculture, the Random Forest (RF) model is popular 

for its simplicity and robustness concerning overfitting. In one case study, a self-training RF algorithm 

coupled with a semi-supervised learning approach was used to predict winter wheat yields, which allowed 

the model to be trained with very few labeled data points (Veerasamy & Fredrik, 2023). The model attained 

high accuracy metrics while being generalizable across zones with different climate conditions and types of 

soil [19]. In addition, the regional implementations of RF models like those from Australia show consistent 

performance improvement when NDVI and other environmental factors are integrated as input features 

(Karimov & Bobur, 2024). These results highlight the model's adaptability to various agroecological regions 

and its importance for operational yield forecasting systems. 

The use of comparative studies in machine learning helps elucidate algorithms' inefficiency when 

faced with varying input data structures and differing predicted outcomes (Sreenivasu et al., 2022). Random 

Forest and XGBoost are two models that have received the most attention in this field, with Random Forest 

almost always demonstrating greater generalization and robustness relative to the other models, particularly 

for noisy or imbalanced datasets (Lakshmi et al., 2023). Recently, a comparative study found that RF 

outperformed the R² values and achieved lower error rates than the rest of the competitors in wheat yield 

prediction tasks. Moreover, adding crop simulation models to deep learning architectures like CNNs and 

DNNs has resulted in hybrid systems that exploit physics-based reasoning and data-driven learning (Zhao et 

al., 2022). Such hybrid systems have reported some of the lowest error rates, highlighting the efficacy of 

integrating deep physical modeling with artificial intelligence for agricultural forecasting. 

Methodology 

This study integrates remote sensing features with supervised machine techniques, classifying them into 

training and test subsets for a supervised learning framework, to systematically forecast crop yields. 

Meteorological features, such as vegetation indices NDVI and EVI, provide timely, spatially coherent 

information on the state of crops. At the same time, weather data contains key insights on environmental 

conditions beneficial for growth and forms a component of the composite model. The data from satellite and 

ground monitoring systems, coupled with VAD and state estimators (or observational function), provide a 

multidimensional dataset capable of addressing diverse spatial prediction tasks. Numerous methodological 

steps were taken to implement a sophisticated system: data collection from satellite and ground-based sources, 

data cleaning and normalization, feature relevance, and application of the random forest regression algorithm. 

Monte Carlo validation and advanced statistical methodology assured dependability of the outcomes, including 

thorough parameter tuning and cross-validation to assure robustness and generalizability of the findings. Each 

stage is outlined below in detail. 

Data Collection and Preprocessing 

This study's crop yield forecasting data are obtained from a fusion of remote sensing satellites and 

meteorological databases. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation 
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Index (EVI) derived from MODIS and Landsat 8 images were used. These indices are important indicators, 

especially aids of crop health and biomass, and were collected during various stages of crop growth, including 

sowing, vegetative growth, flowering, and maturation. NASA POWER provided temperature, rainfall, 

humidity, and solar radiation data as meteorological parameters, and local weather station data where 

available were used for verification. Ground-truth yield data specific to certain crop types and growing 

seasons were collected from agricultural surveys and district-level crop reporting documents. A coherent 

analysis system structured these datasets within a singular, unified temporal and spatial paradigm. 

To prepare the dataset for modeling, several data cleaning processes were performed. Satellite data 

was pre-processed qualitatively to eliminate the cloud cover noise, while the QA band was functioning. Gaps 

and Seasonal Variation in Smoothing Series were minimized through Savitzky-Golay smoothing of the 

vegetation index time series. For the other meteorological datasets, gaps were filled with KNN based on 

temporally and spatially close records values. All Variable were transformed to reflect a scale of 0 to 1 using 

Min-Max scaling ensuring all feasible values were standardized and optimization with different machine 

learning models was guaranteed without bias on the distinct magnitude of each variable. Simultaneously, the 

NDVI and EVI values were adjusted according to the crop calendar to track the active growth phase that has 

consequences on yield potential. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅+𝑅𝐸𝐷)

(𝑁𝐼𝑅−𝑅𝐸𝐷)
            (1) 

In Equation (1), 

NIR -Near-infrared reflectance 

RED -Red reflectance. 

In this case equation 1, NIR indicates the light reflected in the near-infrared spectrum strongly 

reflected by healthy vegetation and RED indicates the light absorbed in the red spectrum plants use during 

photosynthesis. As mentioned, NDVI index ranges from -1 to +1, where values closer to +1 show vigorous 

and healthy vegetation. In contrast, near or below zero values indicate barren land, water bodies, or even 

crops under stress. This simple index allows quantifying the plants' growth conditions temporally and 

spatially, which is why it becomes a vital input variable in this study's crop yield prediction model. 

Dimensionality Reduction and Predictor Optimization 

The selection of pertinent variables from the ever-growing volumes of agricultural and remote sensing data 

is fundamental to constructing an efficient and accurate predictive model. In this research, the initial dataset 

consisted of predictors obtained from satellite images and meteorological data including NDVI, EVI, rainfall 

and temperature averages, and solar radiation, among others. Additionally, some indices were also calculated 

such as SMI and GDD. Contemporaneous data collection from various crop growth stages may lead to 

multicollinearity and overfitting. A hybrid approach integrating filtering, wrapper, and embedded techniques 

for dimensionality reduction and predictor optimization was implemented to overcome these challenges. 

The filtering step required calculating the Pearson correlation coefficients for all the feature pairs and 

removing features with high correlation (r >0.9). Subsequently, Recursive Feature Elimination (RFE) with a 

Random Forest regressor was applied to iteratively prune the features with the least effect on model accuracy. 

The last selection was enhanced by the mean decrease in impurity (MDI) derived from the trained Random 

Forest model where the features were ranked based on the value of node sharpening they provided during tree 
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splitting. The final predictor set consisted of time-specific NDVI and EVI values, seasonal cumulative rainfall, 

mid-season temperature, NDWI, and vegetation dynamics measures. These variables were statistically 

significant and agronomically beneficial, which meant that the model was built to adjust using factors that 

explained the variation in crop yields. 

 

Figure 1. Flowchart of regional crop yield estimation framework using integrated data and crop simulation 

models 

As presented in figure 1, a flowchart integrates remote sensing, climate data, and GIS systems to 

establish “estimation of crop yield on a regional scale”. NDVI of the seasons, crop type, and crop-

management practices are classified along with weather data from climate models, weather stations (AWS), 

and soil data from NBSSLUP. Based on these datasets, crop simulation models are executed to obtain yield 

maps which are subsequently used to assess the regional crop yield. This orderly approach allows for 

meticulous and informed agricultural planning as well as forecasting 

Model Architecture and Learning Framework 

The envisioned framework to predict crop yields incorporates historical yields data, weather data, soil 

information, and management activities to create a holistic dataset that reflects the actual performance of 

crops. Feature selection based on Mutual Information (MI) is applied to improve the model's performance 

and reduce its complexity. This method captures the nonlinear impactof many features on the crop production 

enabling selection of the best predictors to maximize value. After selecting the important features, the dataset 

is divided into training and testing sets for model development and assessment. The primary predictive model 

is Multilayer Stacked Ensemble Regression (MIFS-based) which comprises a series of regression models and 

captures base learners' outputs to form a stacked model. This ensemble approach enhances the performance 

by addressing the weaknesses of overfitting and high bias and variance from the individual models by 

integrating the advantages of multiple regression algorithms. The model is assessed using Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²), benchmarking 

them to other regressive models. The framework is reported to have robust performance in precision 

agriculture and food security when it achieves minimal MAE, minimal RMSE, and maximum. 
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Figure 2. Overview of the crop yield prediction framework 

Figure 2. demonstrates the general structure of the initiated framework for predicting crop yields. It 

captures the merging of various agricultural datasets which is subsequently followed by the implementation of 

feature selection using mutual information to find relevant predictors. The resulting dataset is then split into 

training and testing subsets. The main prediction model is Ensemble Regression with Multilayer Stacking, 

where an ensemble of base learners is used for precise yield estimations. Yield estimation proxies are calculated 

with each model to measure performance, ensuring validation for prediction accuracy, model effectiveness, 

and the ensemble’s strength through dominant model performance (MAE, RMSE, R²). 

Model Training and Hyperparameter Tuning 

The Random Forest regression model was trained to estimate the crop yields accurately. The dataset was 

divided into training and testing sets using a 70:30 split with stratification to maintain representative 

distributions of crop types and agro-climatic conditions within both subsets. The training process was 

accomplished by creating an ensemble of decision trees, where each tree was constructed from bootstrapped 

samples using feature subsets selected at random. The ensemble approach improves the model's reliability by 

preventing overfitting and capturing, with greater accuracy, the complex nonlinear interactions among the 

different variables that characterize agriculture and remote sensing data. 

Using grid search and five-fold cross-validation on the training data offered significant 

hyperparameter optimization. Important hyperparameters were set, including number of trees, maximum tree 

depth, minimum samples per leaf, and number of features for consideration in splits. Focused optimization 

was set on minimizing Root Mean Squared Error (RMSE) and maximizing R square, thus optimizing the 

imbalance between bias and variance. 
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Following the discovered hyperparameters, the model was rebuilt from scratch, with the complete 

training dataset and an independent test set. Predictive accuracy evaluation used RMSE, Mean Absolute Error 

(MAE), and R². Regression baselines included: Linear Regression and Support Vector Regression, which 

proved subpar regarding predictive accuracy and stability compared to the ensemble model of Random Forest, 

showing their underscored value. This was mainly due to the ensemble's capability to model complex 

nonlinear integrated remote sensing and meteorological data, confirming its reliability in monitoring 

operational crop yield forecast. 

Results and Discussion 

The Random Forest model built in this study effectively predicted crop yield across various agro-climatic 

areas. As noted, the evaluation scores from the independent test set show that the model does provide useful 

information and high accuracy compared to the fixed baselines of Linear Regression and Support Vector 

Regression which are weaker methods. These results are compiled in the table containing RMSE, MAE, and 

R² for all the run models, including the baselines. These results demonstrate great value in using information 

obtained from remote sensing data through machine learning due to the intricate non-linearities governing 

crop yields. 

Table 1. Qualitative performance summary of machine learning models 

Model Accuracy Level Error Rate Generalization (R²) Overall Performance 

Linear Regression Low High Poor (0.60) Unsuitable 

Support Vector Regression Moderate Moderate Fair (0.70) Acceptable 

Multilayer Perceptron Good Moderate Good (0.75) Competitive 

XGBoost Very Good Low Strong (0.83) Highly Reliable 

Proposed Random Forest Excellent Very Low Very Strong (0.91) Best Performing Model 

Table 1 provides a qualitative overview of the performance metric scores from different machine 

learning models designed for crop yield estimation. Achievements of The Proposed Random Forest model 

surpasses others comprehensiveley equivocally in terms of accuracy, error rate, and generalization where it 

scored R² = 0.91, hence deeming it the most reliable and best-performing model. XGBoost came in next 

performing well and exhibiting strong generalization with low error thus making it a reliable alternative. The 

Multilayer Perceptron does show reasonable accuracy and generalization placing it as a good contender. On 

the other hand, Support Vector Regression does moderately well. At the same time, Linear Regression has 

poor accuracy, loses predictive capability and is therefore unsuitable for even mildly sophisticated prediction 

tasks such as estimating crop yield. This underscores the relevance of sophisticated ensemble models within 

agricultural forecasting systems. 
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Figure 3: Performance comparison of crop yield prediction models 

In Figure 3, various machine learning algorithms capable of predicting crop yield were evaluated in 

terms of accuracy using RMSE, MAE, and R² metrics. From the results, the Proposed Random Forest model 

provided the best results since it achieved the least RMSE and MAE, and the highest R² value which innately 

signifies good predictive powers. On the contrary, Linear Regression portrayed the worst results with the 

boldest figure for errors and the least R². The figure supports the claim that the Proposed Random Forest 

model is indeed the best out of all tested models. 

Conclusion 

The research shows that using a Random Forest machine learning model for vegetation indices like NDVI and 

EVI alongside other weather data enables preprocessed and feature selected satellite images to capture complex 

nonlinear relationships associated with yield, improving crop yield prediction across variants of agro-climatic 

regions. Also, by leveraging remote sensing information in tandem with meteorological variables, model 

predicts crop yield proficiently capturing intricate complexities exacerbated by non-linear multi-layered 

interactions of underlying dynamics. In addition, the Random Forest model was validated and compared with 

other models including but not limited to: Linear Regression, Support Vector Regression, and XGBoost, 

proving its superiority by yielding better results with less error, better generalization, and stronger accuracy. 

This proves the merit of using Earth observation data combined with ensemble learning techniques to enhance 

precision agriculture, bolster resource management sustainability, fortify food security, and streamline crop 

yield prediction across different environmental settings. 
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