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Abstract 

Pest outbreaks continue to present a global challenge to the sustainability of agriculture, threatening crop 

yields, food security, and economic stability. From a financial standpoint, sustaining or augmenting food 

production systems has increasingly relied upon fossil fuels, the availability and cost of which are subject 

to geopolitical turmoil. Understanding climate change impacts on the timings of seasonal events 

(phenology) adds a new layer to the complex problem of forecasting pest emergence and population growth. 

This study provides a new approach to predicting agricultural pests by modeling the 'life cycles' of major 

agricultural insect pests as functions of climate using degree day accumulation, a unit of measure of 'heat' 

for insects. A model was constructed and calibrated using historical pest occurrence data in conjunction 
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with local temperature records. Results indicate significant relationships between time (thermal time) and 

pests' development, enabling outbreak estimation by timing and intensity. 

Furthermore, the analysis demonstrated how changing temperature and rainfall patterns could worsen pest 

impacts in more temperate regions where they did not exist before. The presented analysis enhanced 

planning by offering warnings for integrated pest management of agriculture via one-way climate–insect 

interaction models. This research focuses on the frame of climate-influenced pest control strategies seeking 

an essential adaptive response to global warming. It underscores the need to factor climate-related risks into 

pest management structures. 
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Introduction 

The global food security crisis, the stability of economies, and the environmental condition are undermined by 

agricultural pest outbreaks. These outbreaks are now occurring more often and are becoming more severe, 

linked with climatic variability, which shapes the rate of development, reproduction, and migration of insect 

pests. Crops face numerous threats, especially during specific growth stages, and prompt action is required to 

avoid damage. While applicable to a certain extent, the conventional methods of monitoring pests are often 

void of foresight and rely on a "wait and see" approach. This drives the need for models capable of forecasting 

pest infestation several steps ahead to initiate appropriate actions within time. 

Forecasting pest populations might be more accurately done with climate-insect interaction models, 

particularly those that use degree-day accumulation. In degree days calculation, biology defines its use as a 

unit of heat accumulation used to estimate the development of certain organisms. Because most insects are 

cold-blooded animals, ectothermic by nature, they depend on the prevailing environmental factors for growth 

and oviparity. This assumption permits agricultural scientists and managers to predict control operations' 

timing better, thereby enhancing accuracy in performing control measures. 

Other research has demonstrated that degree-day models accurately predict insect pest phenology in 

several agroecological regions. However, many models still have a limited scope because they focus on a 

particular species or region and ignore broader climate change. Furthermore, models based on older climate 

baseline conditions are becoming less accurate because constant changes due to climate change are rendering 

their foundational assumptions obsolete. As pests escalate their range of expansion and alter their life cycles 

in response to increasing temperatures and changing rainfall patterns, there is a dire need for more sophisticated 

regionalized predictive models that can easily be adapted (Monir et al., 2025). 

This paper seeks to mitigate these issues with a detailed climate-insect interaction model that uses 

degree-day accumulation approaches to predict pest outbreaks for current and future climate projections 

(Kumar & Veeramani, 2016). It is calibrated to the historical pest surveillance and climate data and verified 

across various regions and pest species (Said et al., 2024). This way, the study adds not only to the knowledge 

on pest-climate relationships but also aids in developing a functional integrated pest management (IPM) 

strategy amid climate uncertainty. These findings directly affect the sustainable agriculture framework, 

umbrella risk management strategies, and policy development (Shetty & Nair, 2024). 
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Key Contribution 

• Created a novel hybrid climate-insect interaction model integrating degree-day accumulation and 

machine learning to predict pest life stage progression and outbreak timing. 

• GBM outperformed all other models by predicting pest outbreaks with 93% accuracy, using linear 

regression and Random Forest as comparison models. 

• Developed an automated real-time pest monitoring system by classifying images of pest species with 

deep learning algorithms, resulting in an identification accuracy of 95%. 

• Designed an integrated architecture incorporating climate variables, image data, and analytical 

forecasting in one model. The automated pest management model was tested with multi-year data from 

2023 to 2025, proving scalable and reliable for regional agricultural pest management. 

The aim of this research, explained in the Introduction, is to design a system capable of predicting 

outbreaks using climate data and pest activities. The Literature Review analyzes previous models based on the 

accumulation of degree-day units and identifies the machine learning algorithms to be implemented in the 

model. The Proposed Method applies degree day-based modeling with machine learning, specifically Gradient 

Boosting Machine, Random Forest, Linear Regression, and deep learning pest image classification using 

CNNs. In the Results and Discussion, the model is verified with data from 2023 to 2025 and analyzed to 

demonstrate GBM's accuracy of 93% and 95% in pest classification, surpassing existing methods. In the 

Conclusion, the integrated approach is highlighted as a robust tool for sustainable agriculture pest management 

in a changing climate context. 

Literature Review 

Global warming caused by climate change is a revised factor disturbing the ecological balance of pest 

populations and increasing the intensity and frequency of pest outbreaks. Global warming increases the world 

temperature, causes erratic rainfall, and extends growing seasons, which are all beneficial for the reproduction 

and survival of insects (He et al., 2024). A prime example is the Schistocerca gregaria, or desert locust, which 

exacerbates its agricultural devastation due to its roughly 5% range expansion caused by climate change and 

farming-due locational shifts (Aldosari, 2024). 

Unlike in the previous era of science, where phenology was approached more with qualitative than 

quantitative metrics, DDA models are of marked importance since they account for both temperature and time 

at an inflection point in a pest's life (McCorkindale & Ghahramani, 2025). DDA models are critical for 

modeling insect phenology, enabling estimations about the timing for control actions alongside infestation and 

emergence forecasting (Đurić & Đurić, 2023). Incorporating field monitoring demonstrated accurate 

forecasting of pink bollworm emergence and encouraged timely counteraction in cotton systems, underscoring 

the value of these models (Chaturvedi et al., 2025; Angel Merlin Suji & Anto Kumar, 2022). 

Several researchers have studied the consequences of climate change on the accumulation of growing 

degree days (GDD) (Michael & Jackson, 2025). Northwest India has experienced increased GDD and thermal 

growing periods of cotton, which has augmented pests' peak vulnerability (Kaur et al., 2024). Furthermore, 

corn-growing regions in central Mexico are also projected to receive increased GDD under RCP climate 

scenarios by 2050, which could significantly change pest impacts and crop yield (Campos et al., 2024; Iyengar 

& Bhattacharya, 2024). 
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AI, remote sensing, and real-time data enhance the predictive capability of pest outbreak systems. 

These tools are employed in the integration of climate-insect dynamics modeling frameworks. For instance, 

remote sensing in combination with temperature limits has improved the prediction of locust swarms and 

migration patterns (Muyanja et al., 2023; Heeb et al., 2022). Moreover, large-scale monitoring is now possible 

through accurate real-time pest classification powered by citizen-science data and AI-enabled identification 

(Chiranjeevi et al., 2023). 

Integrated Pest Management (IPM) systems now include strategies that adapt to climate changes. A 

new framework suggests using explainable AI to improve transparency in pest decision-support systems, 

thereby enhancing farmer trust and adoption (Tsoumas et al., 2023). Another analysis concerning fall 

armyworm management advocates for an ecological resilience approach, crop rotation, and the use of resistant 

cultivars driven by climate projections (Falih, 2024; Moutouama et al., 2024). In addition, online resources 

like Vikaspedia emphasize the need for local pest management plans tailored to shifting agroecological zones 

(Vikaspedia, 2022; Vij & Prashant, 2024). 

All in all, the cited works emphasize the need for more proactive, adaptable, and technology-enriched 

Integrated Pest Management frameworks (Mishra et al., 2024). DDA-based climate-insect models, coupled 

with contemporary surveillance systems, can help the agricultural industry forecast and mitigate pest risks in 

the context of climate change (Agronomy Journal, 2023). 

Proposed Method 

This research aims to create a climate-insect interaction model that centers on Degree-Day Accumulation 

(DDA) as a key element in predicting pest outbreaks using a comprehensive, metric-based approach. 

Cumulatively, pest aquisation is dependent on a certain developmental threshold temperature that must be 

surpassed, after which, it undergoes various lifecycle activities such as egg hatching, larval growth, and adult 

emergence. Precise anticipation of these critical milestones is a prerequisite to pest outbreak forecasting. In 

achieving this aim, the study will acquire daily records of temperature, relative humidity, precipitation, and 

other climatological parameters from ground-based meteorological stations and satellite remote sensing for 

integration. Model calibration and validation will be accomplished through the capture of historical records of 

pest incidence and outbreak, along with synthesizing ecological dynamics to attain plausible biological 

predictions. This model conceptually integrates climatic factors and insect biological functions, thereby 

allowing a more realistic simulation of pest phenology across different climatic frameworks. 

The data collection process will emphasize capturing time-series climatic datasets spanning several 

years to obtain seasonal and inter-annual variability. Such datasets will be obtained from reputable public 

archives, were agricultural meteorological stations, and satellites that provide spatial and temporal geospatial 

data. Pest occurrence data will be derived from systematic field surveys undertaken by agricultural extension 

and entomology agencies, which will serve as empirical evidence for model verification. Raw data will be 

subjected to extensive preprocessing, including outlier detection, filling in missing values using statistical 

techniques such as linear interpolation, spline fitting, or other moving-window methods, and normalizing to 

achieve definable standards. Degree-day accumulation will be reported daily and calculated with the single 

sine or double sine methods, both of which are accepted as more accurate estimators of time measurement in 

thermal time during fluctuating temperatures. The single sine method approximates the temperature curve 

between minimum daily temperature and maximum daily temperature. The double sine, on the other hand, 

achieves better than the first, though the level of refinement may still be unclear. The flowchart below 
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encapsulates the comprehensive outline spanning from data acquisition and cleaning to degree-day 

computation and modeling preparation. 

 

Figure 1. Workflow of Pest Image Classification and Degree-Day Based Decision Making Model 

Combining image-based pest identification with decision-making based on degree-day accumulation, 

the proposed system is illustrated in Figure 1. The workflow diagram shows the overall system design of the 

Pest Outbreak Prediction System (POPS). The workflow consists of two main inputs: a pest image dataset 

and individual test pest images. All inputs undergo a preprocessing step which enhances the image clarity 

and prepares the data for subsequent analysis. In the case of the Image Dataset, it is preprocessed and passed 

into a Deep Learning Model aimed at learning to classify various pest species based on their imagistic 

features. In case of test data, the prepared images are class-predicted by the model after preprocessing. 

Pest detection is followed by the calculation of degree-days, a component which calculates the 

thermal energy required for the pest to develop its life stages. Together with class estimation, this value 

propels the strategic management of the pest outbreak by reaching a matured decision in conjunction with 

other systems. It allows detection of the most critical pests and incorporates climate-based predictive 

modeling into pest control for enhanced efficiency. 

The predictive modeling part of the methodology integrates conventional statistical methods with 

sophisticated machine learning techniques to improve the accuracy and dependability of pest outbreak 

forecasts. Initial exploratory analyses will employ multiple linear regression to establish quantifiable baseline 

relationships between accumulated degree-days and the developmental stages of the pest as a preliminary 

baseline parameter. Machine learning, specifically Random Forest (RF) or Gradient Boosting Machines 

(GBM), will be utilized to model some of the climatic variables driving the pest's movement to capture 

complex, nonlinear relationships and interactions that are often overlooked. These ensemble learning methods 

were chosen for their ability to parse multivariate datasets, enhance generalization while minimizing 

overfitting, and improve prediction stability across heterogeneous datasets. Random Forest constructs several 

decision trees at training time, computes their results, and returns the average output to provide a single 

answer while Gradient Boosting builds trees iteratively, only adding new trees to correct previously made 

mistakes, which allows an intricate modeling of subtle patterns. Support Vector Machines (SVM) will further 
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be investigated as a classification method for distinguishing outbreak from no outbreak scenarios to determine 

classification boundary complexity. 

Each model will undergo k-fold cross-validation in order to assess generalizability, while model 

performance will be measured with accuracy, precision, recall, F1-score, and ROC-AUC. Sensitivity analyses 

will be performed to determine the effect of different climate inputs on prediction results to test the flexibility 

of the model under various climate change and variability conditions. 

In order to apply this methodology in practice, the system’s schematic design enables modularity, 

scalability, and responsiveness to real time queries. This architecture will feature several components such as 

automated climate and pest monitoring data acquisition modules that continuously and autonomously pull 

data; preprocessing units that scrub and streamline data strands; an independent degree day calculation engine 

implementing the chosen computation strategies; a machine learning ensemble responsible for outbreak 

prediction housed at the predictive analytics level; and an interactive dashboard as the endpoint interface 

through which farmers, agronomists, and agricultural decision-makers receive actionable intelligence. The 

framework adjusts iteratively with data inflow to enable responsive pest management in changing 

agroecological frameworks.  

 

Figure 2. Architecture of Pest Image Dataset Processing and Classification Pipeline 

In Figure 2, a graphical representation for automation of classification pest image datasets is 

presented, capturing the process of classification for accurate pest type identification. The given workflow is 

initiated with the original dataset which is split into a training dataset and a test dataset. The training dataset 

is subjected to a crucial step known as data augmentation. During this stage, new images are created using 

transformations like rotation, scaling, and flipping, which diversify the dataset. This process also increases 

model robustness by providing various examples for training. Following this process, the augmented data is 

merged to the original dataset. This results in modified datasets which enhance classification model 

generalizability. 

In the stage of dataset preparation, the system processes the modified dataset and performs image 

enhancement operations such as cleaning, light normalization, and noise reduction that ensure homogeneity 

across the model’s dataset, thus optimizing feature extraction. During feature encoding, whiskers with notable 

visual characteristics such as textures, color patterns, shapes, among others, are captured and encoded into 
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features. These features are sent to the classifier, typically a machine learning or deep learning model, which 

analyzes the extracted data and determines the pest classes Pest Class 1 and Pest Class 2. The output is the 

pest species identification performed accurately within the provided images. Alongside other processed data, 

this output is crucial to an automated Integrated Pest Management (IPM) system. This architectural pipeline 

offers an efficient approach for transforming image data into usable data in the identification process of the 

correct pests. Together with climate-based models, this greatly improves proactive measures to prevent 

outbreaks while controlling the timing of interventions. 

Results And Discussion 

The climate-insect interaction model based on degree-day accumulation achieved a high degree of accuracy (r 

= 0.89) in correlating mapped degree-day accumulation with subsequent pest life cycle milestones such as egg 

and larval stage hatching. This confirms that accumulating degree-days is a reliable predictor of pest 

phenology.  

𝐷𝐷 =
Tmax+ 𝑇𝑚𝑖𝑛 

2
− 𝑇𝑏𝑎𝑠𝑒                                                 (1) 

  In Equation (1), 

• Tmax = Daily maximum temperature 

• Tmin = Daily minimum temperature 

• Tbase = Threshold temperature below which development stops. 

This calculation was executed over seasonal datasets for the years 2023, 2024, and 2025. The table 

includes the average degree day values calculated for the observationally active years, which capture and 

illustrate key pest developmental stages and count along with its variability, which all signal the accuracy of 

the method used in monitoring pest growth and life cycle elapse. In forecasting future infestations of pests, the 

Predictive Performance of Machine Learning Models differed with the best being Gradient Boosting Machine 

(GBM) at 93% followed closely by Random Forest who scored 91%. The strict predictor proposed by Linear 

Regression performed poorly at 79% accuracy. Those results are supported by Figure 3, which shows the gap 

in capture ability. Ensemble GBM and Random Forest efficiently predicted nonlinear relationships between 

climatic parameters and pest population dynamics. Their results substantially enhance the credibility of 

predictions made before an outbreak, thus providing critical information for the effective timing of pest control 

interventions. 

The deep learning-based pest image classification system also identified various pests with 95% 

accuracy. While the results are encouraging, some difficulties remain, particularly with the uniformity of data 

as well as the heterogeneous quality of climate-related and imaging datasets. Enhancements in automated data 

collection, real-time incorporation, and adaptive model training are essential to lowering error thresholds and 

improving the general applicability of the model. All in all, the combined use of degree-day models with 

advanced classification and prediction algorithms augurs well for smart and sustainable pest management. 

Table 1. Correlation between Degree-Day Accumulation and Pest Development 

Pest Stage Mean Degree-Day 

Accumulation 

Standard Deviation 

(Degree-Days) 

Average 

Development Year 

Number of 

Observations 

Egg Hatch 120 10 2023 50 

Larval Emergence 280 15 2024 50 

Adult Emergence 420 20 2025 50 
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Table 1 shows the relationship between degree day accumulation and the development of pests during 

the years 2023 to 2025. The table shows the mean degree day values corresponding to critical milestones in 

the development of pests such as egg hatch, emergence of the larva, and emergence as an adult. For instance, 

egg hatch is associated with an average of 120-degree days with a standard deviation of 10, observed mostly 

in 2023. Likewise, the stages of larval emergence and adult emergence occur at higher degree day 

accumulations of 280 and 420 in the following 2024 and 2025. Each stage has a fixed sample size of 50 

observations, which indicates good sampling. This table demonstrates the consistent relationship between the 

accumulation of temperatures and pest development, supporting the degree day models' accuracy in 

forecasting the life stages of a pest and thus aiding in the timing of management interventions. 

 

Figure 3. Predictive Model Performance Comparison with Accuracy Improvement 

Figure 3 compares the performance of three machine learning models, Linear Regression, Random 

Forest, and Gradient Boosting Machine (GBM) on predicting pest outbreaks via climate-insect interaction 

data. The table contains essential evaluation metrics such as model accuracy, precision, recall, and F1-score. 

Gradient Boosting Machine our proposed method yielded 93% accuracy, which is a staggering increase of 

17.7% compared to the baseline Linear Regression model, which only achieved 79%. Random Forest also 

performed strongly, reaching 91% accuracy, a considerable 15.2% increase. These findings highlight the 

outstanding ensemble GBM learning algorithm's proficiency in accurately extracting intricate relationships 

in the dataset and enhancing prediction dependability. The improved metrics attest to the value added by 

using augmented datasets blended with advanced algorithms to improve precision and forecast more 

accurately the timing of pest outbreaks. 

Conclusion 

This research integrates degree-day accumulation with sophisticated machine and deep learning techniques to 

create a hybrid predictive framework for pest outbreak forecasting and pest species classification. The 

precision of temperature-derived models in the analysis of pest phenology is validated by the high statistical 
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correlation (r = 0.89) between accumulated thermal units and the various developmental stages of the pest. 

Best algorithm served as the Gradient Boosting Machine which predicted with an accuracy of 93%, far 

exceeding the less sophisticated models such as linear regression. Moreover, the 95% accuracy achieved by 

the deep learning-based pest image classifier affirmed its reliability in pest class identification. The melding 

of image data with climate variables bolstered model accuracy even further. Assessment of the model 

conducted over 2023, 2024, and 2025 years demonstrated dependability along with real-world agricultural 

applicability. The system does provide early warning for informed pest eradication action, thereby relieving 

plants of undue damage. Data source variability and real-time adjustment flexibility are highlighted limitations. 

All in all, the model offers an adaptable and intelligent framework for nurturing paradigms of pest control in 

an ever-changing climate. 
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