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Abstract

Pest outbreaks continue to present a global challenge to the sustainability of agriculture, threatening crop
yields, food security, and economic stability. From a financial standpoint, sustaining or augmenting food
production systems has increasingly relied upon fossil fuels, the availability and cost of which are subject
to geopolitical turmoil. Understanding climate change impacts on the timings of seasonal events
(phenology) adds a new layer to the complex problem of forecasting pest emergence and population growth.
This study provides a new approach to predicting agricultural pests by modeling the 'life cycles' of major
agricultural insect pests as functions of climate using degree day accumulation, a unit of measure of 'heat'
for insects. A model was constructed and calibrated using historical pest occurrence data in conjunction
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with local temperature records. Results indicate significant relationships between time (thermal time) and
pests' development, enabling outbreak estimation by timing and intensity.

Furthermore, the analysis demonstrated how changing temperature and rainfall patterns could worsen pest
impacts in more temperate regions where they did not exist before. The presented analysis enhanced
planning by offering warnings for integrated pest management of agriculture via one-way climate—insect
interaction models. This research focuses on the frame of climate-influenced pest control strategies seeking
an essential adaptive response to global warming. It underscores the need to factor climate-related risks into
pest management structures.
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Introduction

The global food security crisis, the stability of economies, and the environmental condition are undermined by
agricultural pest outbreaks. These outbreaks are now occurring more often and are becoming more severe,
linked with climatic variability, which shapes the rate of development, reproduction, and migration of insect
pests. Crops face numerous threats, especially during specific growth stages, and prompt action is required to
avoid damage. While applicable to a certain extent, the conventional methods of monitoring pests are often
void of foresight and rely on a "wait and see™ approach. This drives the need for models capable of forecasting
pest infestation several steps ahead to initiate appropriate actions within time.

Forecasting pest populations might be more accurately done with climate-insect interaction models,
particularly those that use degree-day accumulation. In degree days calculation, biology defines its use as a
unit of heat accumulation used to estimate the development of certain organisms. Because most insects are
cold-blooded animals, ectothermic by nature, they depend on the prevailing environmental factors for growth
and oviparity. This assumption permits agricultural scientists and managers to predict control operations'
timing better, thereby enhancing accuracy in performing control measures.

Other research has demonstrated that degree-day models accurately predict insect pest phenology in
several agroecological regions. However, many models still have a limited scope because they focus on a
particular species or region and ignore broader climate change. Furthermore, models based on older climate
baseline conditions are becoming less accurate because constant changes due to climate change are rendering
their foundational assumptions obsolete. As pests escalate their range of expansion and alter their life cycles
in response to increasing temperatures and changing rainfall patterns, there is a dire need for more sophisticated
regionalized predictive models that can easily be adapted (Monir et al., 2025).

This paper seeks to mitigate these issues with a detailed climate-insect interaction model that uses
degree-day accumulation approaches to predict pest outbreaks for current and future climate projections
(Kumar & Veeramani, 2016). It is calibrated to the historical pest surveillance and climate data and verified
across various regions and pest species (Said et al., 2024). This way, the study adds not only to the knowledge
on pest-climate relationships but also aids in developing a functional integrated pest management (IPM)
strategy amid climate uncertainty. These findings directly affect the sustainable agriculture framework,
umbrella risk management strategies, and policy development (Shetty & Nair, 2024).
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Key Contribution

e Created a novel hybrid climate-insect interaction model integrating degree-day accumulation and
machine learning to predict pest life stage progression and outbreak timing.

e GBM outperformed all other models by predicting pest outbreaks with 93% accuracy, using linear
regression and Random Forest as comparison models.

e Developed an automated real-time pest monitoring system by classifying images of pest species with
deep learning algorithms, resulting in an identification accuracy of 95%.

e Designed an integrated architecture incorporating climate variables, image data, and analytical
forecasting in one model. The automated pest management model was tested with multi-year data from
2023 to 2025, proving scalable and reliable for regional agricultural pest management.

The aim of this research, explained in the Introduction, is to design a system capable of predicting
outbreaks using climate data and pest activities. The Literature Review analyzes previous models based on the
accumulation of degree-day units and identifies the machine learning algorithms to be implemented in the
model. The Proposed Method applies degree day-based modeling with machine learning, specifically Gradient
Boosting Machine, Random Forest, Linear Regression, and deep learning pest image classification using
CNNs. In the Results and Discussion, the model is verified with data from 2023 to 2025 and analyzed to
demonstrate GBM's accuracy of 93% and 95% in pest classification, surpassing existing methods. In the
Conclusion, the integrated approach is highlighted as a robust tool for sustainable agriculture pest management
in a changing climate context.

Literature Review

Global warming caused by climate change is a revised factor disturbing the ecological balance of pest
populations and increasing the intensity and frequency of pest outbreaks. Global warming increases the world
temperature, causes erratic rainfall, and extends growing seasons, which are all beneficial for the reproduction
and survival of insects (He et al., 2024). A prime example is the Schistocerca gregaria, or desert locust, which
exacerbates its agricultural devastation due to its roughly 5% range expansion caused by climate change and
farming-due locational shifts (Aldosari, 2024).

Unlike in the previous era of science, where phenology was approached more with qualitative than
guantitative metrics, DDA models are of marked importance since they account for both temperature and time
at an inflection point in a pest's life (McCorkindale & Ghahramani, 2025). DDA models are critical for
modeling insect phenology, enabling estimations about the timing for control actions alongside infestation and
emergence forecasting (Puri¢ & Buri¢, 2023). Incorporating field monitoring demonstrated accurate
forecasting of pink bollworm emergence and encouraged timely counteraction in cotton systems, underscoring
the value of these models (Chaturvedi et al., 2025; Angel Merlin Suji & Anto Kumar, 2022).

Several researchers have studied the consequences of climate change on the accumulation of growing
degree days (GDD) (Michael & Jackson, 2025). Northwest India has experienced increased GDD and thermal
growing periods of cotton, which has augmented pests' peak vulnerability (Kaur et al., 2024). Furthermore,
corn-growing regions in central Mexico are also projected to receive increased GDD under RCP climate
scenarios by 2050, which could significantly change pest impacts and crop yield (Campos et al., 2024; lyengar
& Bhattacharya, 2024).
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Al, remote sensing, and real-time data enhance the predictive capability of pest outbreak systems.
These tools are employed in the integration of climate-insect dynamics modeling frameworks. For instance,
remote sensing in combination with temperature limits has improved the prediction of locust swarms and
migration patterns (Muyanja et al., 2023; Heeb et al., 2022). Moreover, large-scale monitoring is now possible
through accurate real-time pest classification powered by citizen-science data and Al-enabled identification
(Chiranjeevi et al., 2023).

Integrated Pest Management (IPM) systems now include strategies that adapt to climate changes. A
new framework suggests using explainable Al to improve transparency in pest decision-support systems,
thereby enhancing farmer trust and adoption (Tsoumas et al., 2023). Another analysis concerning fall
armyworm management advocates for an ecological resilience approach, crop rotation, and the use of resistant
cultivars driven by climate projections (Falih, 2024; Moutouama et al., 2024). In addition, online resources
like Vikaspedia emphasize the need for local pest management plans tailored to shifting agroecological zones
(Vikaspedia, 2022; Vij & Prashant, 2024).

All in all, the cited works emphasize the need for more proactive, adaptable, and technology-enriched
Integrated Pest Management frameworks (Mishra et al., 2024). DDA-based climate-insect models, coupled
with contemporary surveillance systems, can help the agricultural industry forecast and mitigate pest risks in
the context of climate change (Agronomy Journal, 2023).

Proposed Method

This research aims to create a climate-insect interaction model that centers on Degree-Day Accumulation
(DDA) as a key element in predicting pest outbreaks using a comprehensive, metric-based approach.
Cumulatively, pest aquisation is dependent on a certain developmental threshold temperature that must be
surpassed, after which, it undergoes various lifecycle activities such as egg hatching, larval growth, and adult
emergence. Precise anticipation of these critical milestones is a prerequisite to pest outbreak forecasting. In
achieving this aim, the study will acquire daily records of temperature, relative humidity, precipitation, and
other climatological parameters from ground-based meteorological stations and satellite remote sensing for
integration. Model calibration and validation will be accomplished through the capture of historical records of
pest incidence and outbreak, along with synthesizing ecological dynamics to attain plausible biological
predictions. This model conceptually integrates climatic factors and insect biological functions, thereby
allowing a more realistic simulation of pest phenology across different climatic frameworks.

The data collection process will emphasize capturing time-series climatic datasets spanning several
years to obtain seasonal and inter-annual variability. Such datasets will be obtained from reputable public
archives, were agricultural meteorological stations, and satellites that provide spatial and temporal geospatial
data. Pest occurrence data will be derived from systematic field surveys undertaken by agricultural extension
and entomology agencies, which will serve as empirical evidence for model verification. Raw data will be
subjected to extensive preprocessing, including outlier detection, filling in missing values using statistical
techniques such as linear interpolation, spline fitting, or other moving-window methods, and normalizing to
achieve definable standards. Degree-day accumulation will be reported daily and calculated with the single
sine or double sine methods, both of which are accepted as more accurate estimators of time measurement in
thermal time during fluctuating temperatures. The single sine method approximates the temperature curve
between minimum daily temperature and maximum daily temperature. The double sine, on the other hand,
achieves better than the first, though the level of refinement may still be unclear. The flowchart below
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encapsulates the comprehensive outline spanning from data acquisition and cleaning to degree-day
computation and modeling preparation.
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Figure 1. Workflow of Pest Image Classification and Degree-Day Based Decision Making Model

Combining image-based pest identification with decision-making based on degree-day accumulation,
the proposed system is illustrated in Figure 1. The workflow diagram shows the overall system design of the
Pest Outbreak Prediction System (POPS). The workflow consists of two main inputs: a pest image dataset
and individual test pest images. All inputs undergo a preprocessing step which enhances the image clarity
and prepares the data for subsequent analysis. In the case of the Image Dataset, it is preprocessed and passed
into a Deep Learning Model aimed at learning to classify various pest species based on their imagistic
features. In case of test data, the prepared images are class-predicted by the model after preprocessing.

Pest detection is followed by the calculation of degree-days, a component which calculates the
thermal energy required for the pest to develop its life stages. Together with class estimation, this value
propels the strategic management of the pest outbreak by reaching a matured decision in conjunction with
other systems. It allows detection of the most critical pests and incorporates climate-based predictive
modeling into pest control for enhanced efficiency.

The predictive modeling part of the methodology integrates conventional statistical methods with
sophisticated machine learning technigues to improve the accuracy and dependability of pest outbreak
forecasts. Initial exploratory analyses will employ multiple linear regression to establish quantifiable baseline
relationships between accumulated degree-days and the developmental stages of the pest as a preliminary
baseline parameter. Machine learning, specifically Random Forest (RF) or Gradient Boosting Machines
(GBM), will be utilized to model some of the climatic variables driving the pest's movement to capture
complex, nonlinear relationships and interactions that are often overlooked. These ensemble learning methods
were chosen for their ability to parse multivariate datasets, enhance generalization while minimizing
overfitting, and improve prediction stability across heterogeneous datasets. Random Forest constructs several
decision trees at training time, computes their results, and returns the average output to provide a single
answer while Gradient Boosting builds trees iteratively, only adding new trees to correct previously made
mistakes, which allows an intricate modeling of subtle patterns. Support Vector Machines (SVM) will further
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be investigated as a classification method for distinguishing outbreak from no outbreak scenarios to determine
classification boundary complexity.

Each model will undergo k-fold cross-validation in order to assess generalizability, while model
performance will be measured with accuracy, precision, recall, F1-score, and ROC-AUC. Sensitivity analyses
will be performed to determine the effect of different climate inputs on prediction results to test the flexibility
of the model under various climate change and variability conditions.

In order to apply this methodology in practice, the system’s schematic design enables modularity,
scalability, and responsiveness to real time queries. This architecture will feature several components such as
automated climate and pest monitoring data acquisition modules that continuously and autonomously pull
data; preprocessing units that scrub and streamline data strands; an independent degree day calculation engine
implementing the chosen computation strategies; a machine learning ensemble responsible for outbreak
prediction housed at the predictive analytics level; and an interactive dashboard as the endpoint interface
through which farmers, agronomists, and agricultural decision-makers receive actionable intelligence. The
framework adjusts iteratively with data inflow to enable responsive pest management in changing
agroecological frameworks.
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Figure 2. Architecture of Pest Image Dataset Processing and Classification Pipeline

In Figure 2, a graphical representation for automation of classification pest image datasets is
presented, capturing the process of classification for accurate pest type identification. The given workflow is
initiated with the original dataset which is split into a training dataset and a test dataset. The training dataset
is subjected to a crucial step known as data augmentation. During this stage, new images are created using
transformations like rotation, scaling, and flipping, which diversify the dataset. This process also increases
model robustness by providing various examples for training. Following this process, the augmented data is
merged to the original dataset. This results in modified datasets which enhance classification model
generalizability.

In the stage of dataset preparation, the system processes the modified dataset and performs image
enhancement operations such as cleaning, light normalization, and noise reduction that ensure homogeneity
across the model’s dataset, thus optimizing feature extraction. During feature encoding, whiskers with notable
visual characteristics such as textures, color patterns, shapes, among others, are captured and encoded into
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features. These features are sent to the classifier, typically a machine learning or deep learning model, which
analyzes the extracted data and determines the pest classes Pest Class 1 and Pest Class 2. The output is the
pest species identification performed accurately within the provided images. Alongside other processed data,
this output is crucial to an automated Integrated Pest Management (IPM) system. This architectural pipeline
offers an efficient approach for transforming image data into usable data in the identification process of the
correct pests. Together with climate-based models, this greatly improves proactive measures to prevent
outbreaks while controlling the timing of interventions.

Results And Discussion

The climate-insect interaction model based on degree-day accumulation achieved a high degree of accuracy (r
=0.89) in correlating mapped degree-day accumulation with subsequent pest life cycle milestones such as egg
and larval stage hatching. This confirms that accumulating degree-days is a reliable predictor of pest
phenology.

__ Tmax+ Tmin

DD — Thase Q)
In Equation (1),

¢ Tmax = Daily maximum temperature
e Tmin = Daily minimum temperature
e Thase = Threshold temperature below which development stops.

This calculation was executed over seasonal datasets for the years 2023, 2024, and 2025. The table
includes the average degree day values calculated for the observationally active years, which capture and
illustrate key pest developmental stages and count along with its variability, which all signal the accuracy of
the method used in monitoring pest growth and life cycle elapse. In forecasting future infestations of pests, the
Predictive Performance of Machine Learning Models differed with the best being Gradient Boosting Machine
(GBM) at 93% followed closely by Random Forest who scored 91%. The strict predictor proposed by Linear
Regression performed poorly at 79% accuracy. Those results are supported by Figure 3, which shows the gap
in capture ability. Ensemble GBM and Random Forest efficiently predicted nonlinear relationships between
climatic parameters and pest population dynamics. Their results substantially enhance the credibility of
predictions made before an outbreak, thus providing critical information for the effective timing of pest control
interventions.

The deep learning-based pest image classification system also identified various pests with 95%
accuracy. While the results are encouraging, some difficulties remain, particularly with the uniformity of data
as well as the heterogeneous quality of climate-related and imaging datasets. Enhancements in automated data
collection, real-time incorporation, and adaptive model training are essential to lowering error thresholds and
improving the general applicability of the model. All in all, the combined use of degree-day models with
advanced classification and prediction algorithms augurs well for smart and sustainable pest management.

Table 1. Correlation between Degree-Day Accumulation and Pest Development

Pest Stage Mean Degree-Day Standard Deviation Average Number of
Accumulation (Degree-Days) Development Year Observations
Egg Hatch 120 10 2023 50
Larval Emergence 280 15 2024 50
Adult Emergence 420 20 2025 50
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Table 1 shows the relationship between degree day accumulation and the development of pests during
the years 2023 to 2025. The table shows the mean degree day values corresponding to critical milestones in
the development of pests such as egg hatch, emergence of the larva, and emergence as an adult. For instance,
egg hatch is associated with an average of 120-degree days with a standard deviation of 10, observed mostly
in 2023. Likewise, the stages of larval emergence and adult emergence occur at higher degree day
accumulations of 280 and 420 in the following 2024 and 2025. Each stage has a fixed sample size of 50
observations, which indicates good sampling. This table demonstrates the consistent relationship between the
accumulation of temperatures and pest development, supporting the degree day models' accuracy in
forecasting the life stages of a pest and thus aiding in the timing of management interventions.

Performance Comparison

Linear Regression (Baseline) Random Forest Gradient Boosting Machine
(Proposed)

Accuracy (%)  mPrecision (%) m®Recall (%) mF1-Score (%) Increase in Accuracy (%)

Figure 3. Predictive Model Performance Comparison with Accuracy Improvement

Figure 3 compares the performance of three machine learning models, Linear Regression, Random
Forest, and Gradient Boosting Machine (GBM) on predicting pest outbreaks via climate-insect interaction
data. The table contains essential evaluation metrics such as model accuracy, precision, recall, and F1-score.
Gradient Boosting Machine our proposed method yielded 93% accuracy, which is a staggering increase of
17.7% compared to the baseline Linear Regression model, which only achieved 79%. Random Forest also
performed strongly, reaching 91% accuracy, a considerable 15.2% increase. These findings highlight the
outstanding ensemble GBM learning algorithm's proficiency in accurately extracting intricate relationships
in the dataset and enhancing prediction dependability. The improved metrics attest to the value added by
using augmented datasets blended with advanced algorithms to improve precision and forecast more
accurately the timing of pest outbreaks.

Conclusion

This research integrates degree-day accumulation with sophisticated machine and deep learning techniques to
create a hybrid predictive framework for pest outbreak forecasting and pest species classification. The
precision of temperature-derived models in the analysis of pest phenology is validated by the high statistical
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correlation (r = 0.89) between accumulated thermal units and the various developmental stages of the pest.
Best algorithm served as the Gradient Boosting Machine which predicted with an accuracy of 93%, far
exceeding the less sophisticated models such as linear regression. Moreover, the 95% accuracy achieved by
the deep learning-based pest image classifier affirmed its reliability in pest class identification. The melding
of image data with climate variables bolstered model accuracy even further. Assessment of the model
conducted over 2023, 2024, and 2025 years demonstrated dependability along with real-world agricultural
applicability. The system does provide early warning for informed pest eradication action, thereby relieving
plants of undue damage. Data source variability and real-time adjustment flexibility are highlighted limitations.
All in all, the model offers an adaptable and intelligent framework for nurturing paradigms of pest control in
an ever-changing climate.
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