ISSN: 2458-8989

Natural and Engineering Sciences

NESciences, 2025, 10 (2): 447-458 doi: 10.28978/nesciences.1763853

Simulating Plant Growth Under Water Stress Using the AquaCrop Model

Mohammed Fallah ^{1*}, Abdusamat Rasulov ², Yasvanthra Ekambaram ³, Khudaybergan Khudayberganov ⁴, Dr.S.N.V.J. Devi Kosuru ⁵, Dr. Atul Dattatraya Ghate ⁶

^{1*} Department of Computer Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Computer Techniques engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
E-mail: iu.tech.eng.iu.comp.mhussien074@gmail.com

² Department of Natural Sciences, Termez University of Economics and Service, Termez, Surxondaryo, Uzbekistan. E-mail: abdusamat_rasulov@tues.uz

³ Department of Marine Engineering, AMET University, Kanathur, Tamil Nadu, India. E-mail: yesumarine@gmail.com

⁴ PhD researcher (Agriculture), Urgench State University, Urganch, Khorezm, Uzbekistan. E-mail: xudaybergan.x@urdu.uz

⁵ Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India. E-mail: jyotsnakosuru@gmail.com

⁶ Professor, Kalinga University, Raipur, India. E-mail: u.atuldattatrayaghate@kalingauniversity.ac.in

Abstract

Water scarcity is one of the significant challenges in plant growth, especially in dry and semi-dry regions, since it can limit growth and crop productivity. Hydroponic systems that employ proactive water consumptive techniques can alleviate this issue. To this end, the study uses the AquaCrop model from the FAO to simulate varying levels of water yield and plant growth responses to yield outcomes and determine if it is helpful to predict growth in Yield under constrained water conditions. All the calibration and validation needed for AquaCrop were done using empirical field data, including soil moisture, evapotranspiration, canopy, and root development. The simulation results were measured against the field data, breaching strong relationships between outputs and physiological responses, such as lessened >biomass and canopy agglomeration, as well as increased responsiveness to stimulus in the opposite direction. Focusing more on sensitivity analysis, the precision of the results was significantly determined by irrigation interval, crop coefficient, and soil texture. Derived conclusion: AquaCrop can be

recommended as a reliable source for supporting analysis to resolve hydraulic restrictions in agricultural settings. The study demonstrates AquaCrop's ability to refine irrigation schemes, which, coupled with proper strategizing, can enable farmers to cope with climate change. Further work on the model should include real-time weather data feeding its agroecological scope.

Keywords:

Aquacrop, water productivity, water stress, irrigation management, crop yield simulation.

Article history:

Received: 15/04/2025, Revised: 17/05/2025, Accepted: 30/07/2025, Available online: 30/08/2025

Introduction

Definition of Water Stress in Plants

Diminished Water Availability: Water stress is a potent form of abiotic stress, as water is vital for sustaining life. When the water potential of tissues in a living organism falls below the optimum levels, it impedes metabolic activities and is termed 'water stress'. Furthermore, water stress can happen when the rate of transpiration exceeds the rate of water uptake because of insufficient irrigation, high atmospheric vapour pressure, or a low water content. Stomatal closure, decreased turgor pressure, suppression of cell expansion, and altered hormone signalling pathways, mostly involving abscisic acid (ABA), are among the response series observed in plants under water scarcity. Together, these reduce the overall photosynthetic capacity, carbon capture, biomass accumulation, and reproductive yield. A plant's capacity to endure and remain functional under dry conditions, or withstand drought, is assessed at both cellular and whole plant levels and necessitates in-depth knowledge of the plant—water relations mechanistic framework.

Importance of Understanding Plant Growth Under Water Stress

Studying the growth of crops under limited water conditions is vital for increasing water productivity in crops, particularly in arid and semi-arid areas that are experiencing greater hydrology uncertainty owing to changes in the climate (Zhou et al., 2024). Water stress impacts the growing phenology, source—sink dynamics, and assimilate partitioning processes, affecting important agronomic parameters like leaf area index (LAI), harvest index (HI), and grain filling duration (Wei-Liang & Ramirez, 2023). Simulating these interactions enhances understanding of genotype-by-environment interplay and aids in formulating irrigation plans, managing deficit irrigation, and selecting cultivars for specific edaphoclimatic zones. Expectation management within water-sensitive crop production systems is critical for sustainable and resilient production systems that cultivate crops sensitive to drought (Amiri et al., 2021).

Overview of the AquaCrop Model

AquaCrop is an agricultural simulation model produced by FAO to evaluate the water adaptability of grassland crops (Zheng et al., 2023). As a water-driven, process-oriented model, it simulates crop development and productivity by incorporating the soil-water balance, crop phenology, canopy cover development, transpiration, and biomass partitioning (Farfoura et al., 2023). Unlike complicated crop simulators that rely on extensive crop peripheral datasets, AquaCrop relies on a heuristic approach with more limited inputs. Nonetheless, it still preserves the integrity of the biophysical response of the crop to water stress (Chandravanshi & Neetish, 2023). It also distinguishes transpiration from evaporation within the context of evapotranspiration (ET) components. This distinction is critical for accurately estimating crop yields in limited water availability conditions. Stress coefficients are introduced to account for partial canopy

formation, reduced stomatal opening, and more rapid senescence from soil moisture depletion in a progressive physiological drying soil (Yuvaraj, 2017). These features and the modularity and flexibility of various crops and agro-climatic zones enhance their usefulness for water resources management, irrigation planning, and climate impact studies (FAO, 2023).

Key Contribution

- Exemplifies the capabilities of the AquaCrop model in modelling crop yield and development in various water stress situations.
- Sheds light on water productivity (WP) as an underlined and pertinent parameter of water resource utilization in crop production regarding efficiency.
- This paper offers guidance for irrigation management by analyzing the full, deficit, and rain-fed irrigation approaches in relation to biomass, yield, and water consumption.
- Enhances the empirical results with model simulations to improve the strategic decisions for adapting to limited water availability in the region, thus promoting sustainable agriculture.

This paper uses the application to replicate crop development and yield under water stress using the AquaCrop model.

As discussed in the Introduction, which describes the problems water scarcity poses for agriculture. Drawing from the Works Cited Chapter, it critiques other agricultural models and studies on hydrology and irrigation water management. The Proposed Method section describes how the AquaCrop model was applied, what data was fed to the system, and how the simulations were run. In Results and Discussion, the article examines the ability of the model to predict crop response to varying irrigation levels. In the Conclusion, the author highlights the importance of the findings, particularly the possibility of using the model to sustain and enhance water use efficiency and sustainable irrigation practices.

Related Works

Accompanied by technological advancements and climate change, crops' physiological and phenological responses to water stress have become areas of concern for agricultural research (de Roos et al., 2022). With this, crop simulation models such as AquaCrop have shifted focus towards predicting plant growth and Yield based on the availability of water resources (Zafarmand, 2016). AquaCrop integrates crop physiology and soil water balance to simulate canopy growth, biomass accumulation, and evapotranspiration. Tomato crops, in particular, have been the focus of recent validation studies, and the results have confirmed excellent modeling accuracy of moisture and growth parameters and strong agreement with measurement data. These findings exemplify the soil–plant–atmosphere subsystem interaction that AquaCrop can incorporate while still performing under water-limited conditions (Shan et al., 2022).

Previously, calibration for AquCrop's modelling, which focuses on the growth of maize with different methods of soil tillage and irrigation in the coastal region of China, was done extensively. The model has been reasonably accurate in predicting canopy cover, biomass accumulation, and grain yield of maize, indicating how well it managed water stress in maize and optimizing irrigation scheduling (Wang et al., 2024). AquaCrop has also been used for simulation studies of Cotton, which is sensitive to acute water stress in a semi-arid region. The model provided accurate predictions of field data on canopy growth and upper root

biomass, enabling evaluation of deficit irrigation-based systems. These studies evaluate and validate the capability of AquaCrop to simulate the effects of water stress on various crops and climatic regions (Tirmare et al., 2024).

AquaCrop simulations have been beneficial for wheat farming in arid and semi-arid areas, particularly regarding irrigation scheduling determinations and yield forecasting (Monica Nandini, 2024; Deshmukh & Nair, 2024). It has been shown that AquaCrop can simulate grain yield and biomass production, thus aiding decision-making geared towards increasing water productivity in arid regions. For instance, in Heilongjiang Province of China, AquaCrop was applied to assess the water requirements of maize to ensure optimal water use efficiency and demonstrate the model's usefulness in regional water resource management (Ahmadi et al., 2024). Besides, the model has been applied to estimate the water footprint of wheat in terms of climate change and other forecast variables, which assisted in evaluating the impact of agricultural water use and environmental sustainability on the agricultural system (Robles et al., 2015). This body of research demonstrates the broad range of AquaCrop, combining its agronomic and ecological functionalities (Wang et al., 2021).

AquaCrop has been implemented on tuber crops like potatoes, optimizing drip irrigation scheduling for dryland regions. The model's growth stage biomass and water use efficiency irrigation level simulations have maintained water-savings strategies, exceeding providing appropriate pumps without yield reduction (Unger, 2024). Also, the research concerning winter wheat has facilitated the understanding of AquaCrop's capabilities concerning crop growth simulation and water and nitrogen management (Zor & Rahman, 2025). This advanced productivity of crops and effectiveness of resource use are critical for agriculture's sustainable intensification. This evidence demonstrates the versatility of AquaCrop concerning the simulation of different crops, management plans, and multiple crops and strategies for their management (Zhang et al., 2022). While AquaCrop has achieved milestones, further work relies on estimating plant physiological responses to extreme and prolonged water limitations (Far, 2017). More recent work emphasizes AquaCrop's integration with remote sensing data and GIS frameworks for increased spatial granularity and regional relevance as a primary gap in work. Other gaps include model constructs of nutrient availability with specific genotype interactions of nutrients for more accurate simulations of model parameters. Stronger AquaCrop simulations integrating dependent planning systems for climate-resilient agriculture under precision tools will require ongoing refinement calibrated with high-accuracy field data.

Proposed method

AquaCrop Model Overview

The AquaCrop model is an established process-based simulation model developed by the Food and Agriculture Organization (FAO) to estimate crop growth and yield based on available water resources. AquaCrop is simpler than other models but more complex than basic ones because it balances water's role in crop production and accuracy. Simulations in this model are based on crop biomass accumulation as a result of crop transpiration. Water productivity (WP) is a parameter used in these simulations, measuring the water use efficiency value of the crop under prevailing atmospheric conditions. This emphasis enables AquaCrop to model the impacts of different levels of water stress on crop development and Yield, which is especially useful in environments with scarce water supply.

$$ET_0 = \frac{\left(0.408 \,\Delta \,(R_n - G) + \gamma \left(\frac{900}{T + 273}\right) * u_2 * (e_S - e_a)\right)}{\Delta + \gamma \,(1 + 0.34 * u_2)} \tag{1}$$

In Equation (1),

- ET_0 Evapotranspiration reference (mm/day)
- Δ Saturation vapour pressure curve slope (kPa/°C)
- R_n Agricultural surface net radiation (MJ/m²/day)
- The soil heat flow density (MJ/m²/day) is frequently insignificant for everyday timescales.
- Δ Psychrometric constant (kPa/°C), dependent on atmospheric pressure
- T Mean daily air temperature at 2 meters height (°C)
- u_2 Wind speed at 2 meters height (m/s)
- e_s Saturation vapor pressure (kPa)
- e_a Actual vapor pressure (kPa)

Evapotranspiration reference value (ET₀) can be determined with equation 1, which is the Penman-Monteith equation. It combines energy balance with aerodynamic approaches to estimate reference evapotranspiration. Along with solar radiation, ET₀ also considers temperature, wind speed, humidity, and other factors that contribute to the crop water requirement.

This model operates on a daily cycle, where daily temperature, solar radiation, relative humidity, and wind speed data are utilized to compute reference evapotranspiration (ETo) using the Penman-Monteith equation. This value is a base reference for measuring crop water requirements throughout the various growth stages. Besides this, AquaCrop also incorporates soil water dynamics like infiltration, runoff, drainage, and root water uptake, allowing simulation of soil moisture changes, which are critical for evaluating plant water stress. The accurate modeling of some physiological processes, such as canopy development and biomass accumulation, is responsive to moisture, which is an advantage of the model. Stress coefficients that reduce growth rates during water deficit periods are applied to incorporate the impacts of drought stress on crop production, making the model closer to reality.

Input Data and Parameters

The model's precision and dependability are considerably influenced by achieved objectives such as the data's quality, completeness, and resolution, and the input data of the AquaCrop model. As the model attempts to simulate the intricate interactions between crop growth and water availability, it needs a dataset that includes the weather, soil, and crop conditions that determine developmental climatologic factors on the plant. The correct description of these factors enables AquaCrop to simulate realistically the water balance processes of water uptake, stress response, and biomass accumulation during varied irrigation and rainfall conditions.

Input data for AquaCrop is normally organized into three broad groups: climate, soil, and crop parameters. Each group significantly defines the physical and biological factors attributed to the growth cycle of the crop.

Climate Data:

The daily weather elements of maximum and minimum temperatures, solar radiation, relative humidity, and wind speed are used in estimating ET₀, reference evapotranspiration, using the Penman-Monteith equation. These climatic parameters drive crop transpiration and phenology, subsequently affecting biomass yields and the intensity of water stress. Quality climate data is important to assess daily changes in the supply and demand of water.

Soil Data:

Soil physical properties such as texture (sand, silt, clay), bulk density, field capacity, wilting point, saturation, hydraulic conductivity, and profile depth influence retention and movement of water within the soil. AquaCrop models the soil in layers to simulate infiltration, redistribution, and root water uptake as defined processes. Soils with coarser textures drive drought onset and severity due to their low moisture retention capacity.

Crop Parameters:

Phenological stages such as emergence, flowering, maturity, maximum canopy cover, rooting depth, base temperature, and harvest index along with water productivity (WP) are included as specific inputs for the crop. WP indicates the relationship between biomass production and water used in the process, thus indicating the crop's water efficiency. The depth of roots determines the amount of soil available for water retrieval. The selected parameters need to be adjusted with field data to represent crop behavior accurately.

Together, these inputs allow AquaCrop to model the interaction of the climate, soil, and crops relative to the water resources, growth, and Yield of the plant under water limitations. Trustworthy information is extremely important for producing accurate forecast results that will direct irrigation and drought mitigation efforts.

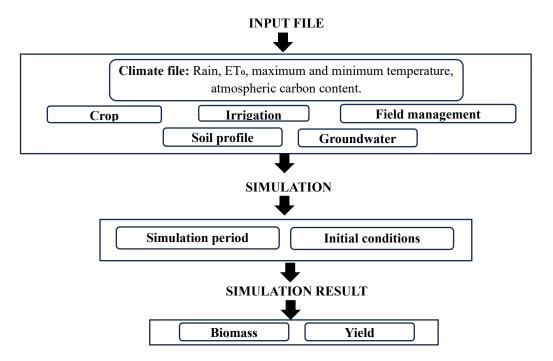


Figure 1. AquaCrop Simulation Workflow

Figure 1 highlights the AquaCrop model in its implementation phase, indicating how the model simulates plant growth under water stress. The AquaCrop model follows a specific procedure in which it accepts root information files containing essential elements like weather data (precipitation, ETo, temperature, carbon content), crop parameters, irrigation policy, management practices on the field, soil profile details, and groundwater information. All this data is fed into a simulation module running according to predetermined time intervals and sets of conditions. The model also computes the data to achieve specific outputs, in om this case, biomass production and yield estimations. Such a methodical sequence of activities guarantees that crop-water interaction simulations will be complete for assessing the plant's response to the changing water supply.

Simulation Algorithms

The AquaCrop model executes simulations of crop growth, Yield, and the response to the water availability using multiple integrated algorithms. One sub-model, the canopy growth algorithm, simulates the expansion of the leaf area index (LAI) via logistic growth which in turn regulates transpiration and photosynthesis. Canopy growth is furthermore modified rationally through a moisture-stress coefficient which limits leaf area expansion due to soil moisture depletion below crop-specific values. The model also simulates leaf senescence during drought resulting in reduced photosynthesis as stressed leaves age and are lost. The soil water balance algorithm controls the daily changes in soil moisture due to weather and anthropogenic activities through precipitation and irrigation as input and loss through runoff, deep drainage, soil evaporation, crop transpiration, and soil water loss. AquaCrop allows calculation of vertical water movement and root water uptake at different soil depths by subdividing the soil profile into several layers. This approach enables better estimation of water for the crop during the growing season which is important for drought periods when water is limited and growth is impacted.

$$Biomass = WP \times \sum (Tr \times K_s)$$
 (2)

In Equation (2),

- Biomass is the total dry matter accumulated by the crop (g/m^2)
- WP is the water productivity parameter $(g/m^2/mm)$
- Tr is the actual daily transpiration (mm/day)
- K_s is the water stress coefficient ($0 \le K_s \le 1$), which reduces transpiration under soil moisture deficit.

In Equation 2, the overall biomass (dry matter) produced by the crop is estimated by WP multiplied by the summation of daily actual transpiration (Tr) for every day, except it's modified by a stress factor (K_s) pertaining to water supply. It shows the productivity of crops in transitioning transpired water into biomass depending on the available water relative to the evaporative demand.

Data Collection, Calibration, and Validation

Effective simulations utilizing the AquaCrop model hinge on the accuracy of the data collected. Weather data which included daily values of maximum and minimum temperatures, solar radiation, relative humidity, and wind speed, was obtained from automated local meteorological weather stations. Soil data comprising texture, bulk density, field capacity, permanent wilting point, hydraulic conductivity, and depth of the soil profile

were collected during field sampling and analyzed in the lab. Parameters specific to crops, which include phenological stages, canopy cover, rooting depth, and biomass accumulation, were obtained from controlled field experiments performed over several growing seasons under different irrigation strategies. Yield data was also collected for the purpose of model validation. An extensive set of predefined defined quality control checks such as gap filling and anomaly checking performed on the input datasets ensured their completeness and accuracy.

In the calibration of models, specific crop parameters including water productivity (WP), canopy growth rates, and phenological periods were adjusted to ensure that simulated results matched observed field data. The iterative simulations aimed to reduce the difference between predicted and measured canopy cover, biomass, and Yield. After calibration, validation was performed on a separate dataset to estimate predictive accuracy. Measurements of RMSE, R², and MBE provided indices of the model's accuracy. Such thorough data collection along with precise calibration and robust validation in estimating the dryland scenarios ensures that AquaCrop can simulate growth and yield responses under various levels of water stress, thus aiding in irrigation planning and drought mitigation efforts.



Figure 2. Remote Sensing-Based Architecture for AquaCrop Yield Simulation

In the figure, an integrated architecture combining remote sensing paired with field observations is presented, alongside simulation-based estimation of crop yield under water stress with AquaCrop. The workflow commences with the acquisition of Sentinel-2 time series imagery, streaming data collection, and preprocessing in order to set the supplied data in the required format. In Stage 3, retrieval of biophysical variables such as fractional canopy cover (fCover), standard deviation (SD), and coefficient of variation (CV%), are conducted with the GPR-PSO (Gaussian Process Regression enhanced with Particle Swarm Optimization) method. Step 4 employs the Morris-EFAST technique performing sensitivity analysis for identifying the most critical parameters influencing model behavior. These parameters are assimilated with AquaCrop using the WCA (Water Content Assimilation) module which improves state variable adjustments for enhanced simulation accuracy. A yield map was produced showing productivity zones of the crop yield which provides an accurate assessment of the crop growth performance under different water availability conditions. This architecture is useful for effective irrigation scheduling and stress alleviation.

Results and discussion

Employing the AquaCrop model to simulate the response of crops with different irrigation levels has helped understand better the relationship between Yield and water use. The model was run under three irrigation regimes which include Full Irrigation (FI), Deficit Irrigation (DI), as well as Rain-fed (RF) or high, medium and low water availability respectively. This research focused on determining the water-yield relationship in the irrigated regions and estimating the trade-off between water consumption and Yield. With daily weather data, soil type, and crop rotation parameters, the model encapsulated the fundamental interacted reflexes of evapotranspiration and crop yield. The findings demonstrated distinct variation of the three treatments with respect to treatment biomass accumulation, final Yield, and water productivity. From those findings, it is observed that even with less irrigation, crops still maintained reasonable yield potential which indicates possible adoption of these techniques in regions with limited water resources. The focus of this paper consists of major highlighted metrics, evaluation of water productivity as well as graphical and tabular presentation of yield results which collectively affirm the benefits of simulation analysis for sustainable agriculture planning.

Water Productivity Formula

$$WP = \frac{Y}{ET} \tag{3}$$

In Equation (3),

- Y = Yield (dry biomass adjusted by the harvest index)
- ET = Evapotranspiration (total water lost through transpiration and soil evaporation during the growing season)

The Equation (3) calculates the effectiveness of water usage in achieving crop yield. An increase in WP indicates the crop produces more harvestable biomass per unit of water consumed, which is vital in water-limited or rain-fed agriculture systems. Improving WP strengthens food security while minimizing water resource exploitation.

Table 1. Irrigation Levels and Water Productivity

Irrigation Level	Biomass (kg/ha)	Yield (kg/ha)	ET (mm)	Water Productivity (kg/m³)
Full Irrigation (FI)	14,500	7,200	515	1.40
Deficit Irrigation (DI)	11,200	5,400	432	1.25
Rain-fed (RF)	8,000	3,000	305	0.98

In Table 1, the impact of varying irrigation levels on biomass, Yield, evapotranspiration (ET), and water productivity (WP) is presented. Total irrigation offers the greatest biomass and Yield accompanied by the highest water consumption, whereas deficit irrigation reduces both parameters but still sustains a relatively high WP. Rain-fed conditions exhibit the least Yield and biomass alongside the lowest water consumption and WP. This emphasizes the balance between the availability of water and the efficiency of crops, which the AquaCrop simulations try to model.

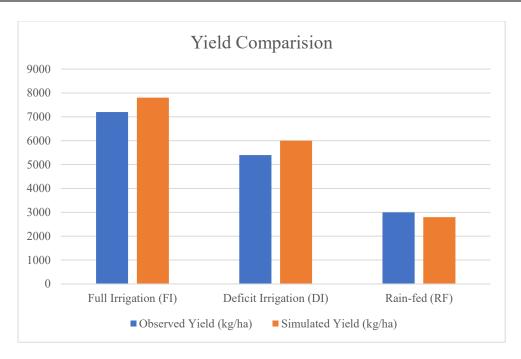


Figure 3. Observed vs. Simulated Yield under Irrigation Treatments

Figure 3 illustrates the comparison between yields from field data and those simulated with the AquaCrop model for three irrigation treatments: Full Irrigation, Deficit Irrigation, and Rain Fed. The yields obtained from simulation seemed to follow the general trends of the yields obtained from the field, where irrigation resulted in increased Yield and rain-fed conditions resulted in reduced Yield. This understanding exemplifies the ability of the model to consider water-related constraints and their impact on crop yield and development. The small deviations between the observed and simulation values might be the result of environmental influences, measurement inaccuracies, or some assumptions made in the model. Notwithstanding these factors, the close agreement overall leads to the conclusion that the model is dependable for predicting the consequences of water stress on crop yields. This capability is vital for the construction of efficient irrigation strategies and for the optimal utilization of water resources in the region in semi-arid and arid zones. The insights validate AquaCrop's usefulness as a strategic planner relating to water and agriculture for various climates and soils.

Conclusion

The study findings revealed that the AquaCrop model accurately simulates crop yield in relation to different irrigation practices, as the field data corroborated the simulated values. Such a close agreement demonstrates the model's fidelity in simulating agricultural climatic impacts on crops as water availability and water stress levels fluctuate. Furthermore, AquaCrop's estimations add value in decision support from the Advanced Irrigation Schedule and Enhanced Water-utilization Efficiency systems. This enhancement is critical in hyper-arid and semi-arid water scarce zones where water resources are limited and agricultural potential is highly sensitive. AquaCrop improves water-efficiency without undermining crop yield, thus advancing the sustainability of agricultural practices. Its user-friendly nature stems from its low data input requirements, wide adaptability to different crops, regions, and climates, which expand its applicability in agricultural endeavors. However, precision of the model will improve with continued refinements using real-time weather data, granular crop-specific adjustments, and including nutrient interactions. In conclusion, AquaCrop demonstrates adequate capabilities toward promoting water-scarce situation for climate-sensitive agriculture and heightened demand for food security in a world with limited water resources.

References

- Ahmadi, M., Etedali, H. R., Salem, A., Al-Mukhtar, M., & Elbeltagi, A. (2024). Simulation of wheat water footprint using AquaCrop model under the climate change, case study in Qazvin plain. *Applied Water Science*, 14(12), 264. https://doi.org/10.1007/s13201-024-02305-0.
- Amiri, E., Bahrani, A., Irmak, S., & Mohammadiyan Roshan, N. (2022). Evaluation of irrigation scheduling and yield response for wheat cultivars using the AquaCrop model in an arid climate. *Water Supply*, 22(1), 602-614. https://doi.org/10.2166/ws.2021.246
- Aziz, M., Rizvi, S. A., Sultan, M., Bazmi, M. S. A., Shamshiri, R. R., Ibrahim, S. M., & Imran, M. A. (2022). Simulating cotton growth and productivity using AquaCrop model under deficit irrigation in a semi-arid climate. *Agriculture*, 12(2), 242. https://doi.org/10.3390/agriculture12020242.
- Busschaert, L., de Roos, S., Thiery, W., Raes, D., & De Lannoy, G. J. (2022). Net irrigation requirement under different climate scenarios using AquaCrop over Europe. *Hydrology and Earth System Sciences*, 26(14), 3731-3752.
- Chandravanshi, N., & Neetish, K. (2023). Diurnal Variations in Greenhouse Gas Emissions from a Macrophyte-Covered River. *Aquatic Ecosystems and Environmental Frontiers*, *I*(1), 11-15.
- Deshmukh, A., & Nair, K. (2024). An Analysis of the Impact of Migration on Population Growth and Aging in Urban Areas. *Progression Journal of Human Demography and Anthropology*, 1-7.
- Far, L. M. (2017). Regression Techniques Using Data Mining in Flowering Plant. *International Academic Journal of Science and Engineering*, 4(2), 190-197.
- Farfoura, M. E., Khashan, O. A., Omar, H., Alshamaila, Y., Karim, N. A., Tseng, H. T., & Alshinwan, M. (2023). A Fragile Watermarking Method for Content-Authentication of H. 264-AVC Video. *J. Internet Serv. Inf. Secur.*, 13(2), 211-232. https://doi.org/10.58346/JISIS.2023.I2.014
- Food and Agriculture Organization. (2023). AquaCrop model overview. Retrieved from https://www.fao.org/aquacrop/en/.
- Nandini, G. K. (2024). IoT Use in A Farming Area to Manage Water Conveyance. *Archives for Technical Sciences/Arhiv za Tehnicke Nauke*, (31).
- Nie, T., Jiao, Y., Tang, Y., Li, N., Wang, T., Du, C., ... & Li, F. (2021). Study on the Water Supply and the Requirements, Yield, and Water Use Efficiency of Maize in Heilongjiang Province Based on the AquaCrop Model. *Water*, *13*(19), 2665. https://doi.org/10.3390/w13192665
- Robles, T., Alcarria, R., de Andrés, D. M., de la Cruz, M. N., Calero, R., Iglesias, S., & Lopez, M. (2015). An IoT based reference architecture for smart water management processes. *J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl.*, 6(1), 4-23. https://doi.org/10.22667/JOWUA.2015.03.31.004
- Shan, Y., Li, G., Su, L., Zhang, J., Wang, Q., Wu, J., ... & Sun, Y. (2022). Performance of AquaCrop model for maize growth simulation under different soil conditioners in Shandong Coastal Area, China. *Agronomy*, 12(7), 1541. https://doi.org/10.3390/agronomy12071541

- Tirmare, A. H., Mali, P. S., Shirolkar, A. A., Shinde, G. R., Patil, V. D., & Tirmare, H. A. (2024). VLSI architecture-based implementation of motion estimation algorithm for Underwater Robot Vision System. *Journal of VLSI Circuits and Systems*, 6(2), 115-121. https://doi.org/10.31838/jvcs/06.02.13
- Unger, S. Exploring malacological observations on iNaturalist: Citizen science as a tool for monitoring freshwater mussels. *International Journal of Aquatic Research and Environmental Studies*, 0-0. http://dx.doi.org/10.70102/IJARES/V4I2/10
- Wang, S., Wang, D., Liu, T., Liu, Y., Luo, M., Li, Y., Zhou, W., Yang, M., Liang, S., & Li, K. (2024). Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the AquaCrop Model. *Agronomy*, 14(1), 110. https://doi.org/10.3390/agronomy14010110.
- Wei-Liang, C., & Ramirez, S. (2023). Solar-Driven Membrane Distillation for Decentralized Water Purification. *Engineering Perspectives in Filtration and Separation*, 16-19.
- Yin, J., Yang, Y., Eeswaran, R., Yang, Z., Ma, Z., & Sun, F. (2023). Irrigation scheduling for potatoes (Solanum tuberosum L.) under drip irrigation in an arid region using AquaCrop model. *Frontiers in Plant Science*, 14, 1242074. https://doi.org/10.3389/fpls.2023.1242074
- Yuvaraj, S. (2017). Removal of Lead and Cadmium from Soil Using Sunflower Plant. *International Journal of Advances in Engineering and Emerging Technology*, 8(4), 156-162.
- Zafarmand, O. (2016). The study of the relationship between entertainment and water sport through creating tourism attraction and development (sport tourism) in Bushehr coasts. *International Academic Journal of Innovative Research*, 3(1), 18–22.
- Zhou, C., Zhao, W., Li, H., Ma, F., & Wu, K. (2024). Simulation and evaluation of tomato growth by AquaCrop model under different agricultural waste materials. *International Journal of Agricultural and Biological Engineering*, 17(5), 112-119. https://doi.org/10.25165/j.ijabe.20241705.8539
- Zor, A., & Rahman, A. (2025). Nanomaterials for water purification towards global water crisis sustainable solutions. *Innovative Reviews in Engineering and Science*, 3(2), 13–22. https://doi.org/10.31838/INES/03.02.02