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Abstract 

Amphibians are one of the most imperiled groups of vertebrates; many species worldwide are intrinsically 

susceptible to extinction due to habitat loss, climate change, disease, and various other anthropogenic 

factors. Deterministic models often fail to capture the complex and diverse nature of uncertainty exhibited 

in ecological data, particularly for species with limited data. Our study presents a Bayesian modeling 

framework that estimates extinction risk in critically endangered amphibians, utilizing input from both 

prior ecological knowledge and limited observational data to produce probabilistic estimates of extinction 

risk. We developed hierarchical models to generate an unpredictable extinction risk based on species-

specific life-history traits, fragmentation indices, and exposure to threats. The Bayesian framework is 

advantageous as it accounts for the uncertainty of the data and provides an updated extinction risk 

estimate with new information as it becomes available, which is crucial for the adaptive management of 

conservation. The model we applied to explore extinction risk across 50 critically endangered amphibian 
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species in various parts of the globe illustrates considerably different extinction risks. Disease prevalence 

and microhabitat specialization were the two primary predictors of extinction risk for a highly threatened 

group of vertebrates. We demonstrate the application and utility of Bayesian modeling in the context of 

developing extinction risk in conservation biology. It affords a statistically robust, transparent, and 

flexible means to advance the protection of extinct species by prioritizing species and acting with targeted 

mitigation measures under significant uncertainties. 
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Introduction 

Status of Critically Endangered Amphibians 

Amphibians are currently among the most threatened groups of vertebrates worldwide, with 41% of all 

amphibian species being threatened. In critically endangered amphibian groups, this does not suggest that 

extinction risks are potentially imminent, but rather that we may already have passed that point. Moreso, 

amphibians are uniquely positioned in a perfect storm of threats from habitat destruction, climate change, 

environmental pollution, invasive species, and emerging infectious diseases (e.g., Batrachochytrium 

dendrobatidis - Bd) (Sharipov et al., 2024) that are well documented to be responsible for major declines and 

extinctions (Scheele et al., 2019; Rao & Menon, 2024). In general, critically endangered amphibians are 

characterized as having naturally restricted ranges, low fecundity, and being extremely sensitive to 

environmental changes (Hof et al., 2011). Furthermore, many amphibian species have not been seen for years 

or even decades, creating uncertainties about whether they even still exist! Anthropogenic changes occur 

quickly and without recent field surveys, the time-stated available for predicting extinction risk has 

constricted the timely assessment of extinction risks to amphibian conservation science (which is 

characterized by always being behind the 8 ball!). Additionally, traditional conservation planning often does 

not have appropriate funding or poorly allocated resources and without concrete, quantifiable data on 

potential extinction risks, conservation planning will always remain retrospectively reactive and not 

proactive (Bielby et al., 2008). In respect to this challenge, the use of statistical modeling to determine 

extinction probabilities, based upon the data presented, is not only useful but necessary. 

 

Figure 1(a). Real-World Drivers of Extinction Risk in Critically Endangered Amphibians 
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This diagram (Figure 1(a)) provides a straightforward representation of a conceptual model 

identifying some of the major factors that influence extinction risk in critically endangered amphibians. At 

the center of the figure is "Extinction Risk" which are affected by environmental and anthropogenic drivers. 

Urbanization and climate change can impact habitat loss and habitat degradation, as they can alter habitat 

use or destroy the habitat completely and may threaten the species entirely. Habitat loss is the single most 

significant threat a species can face, and habitat degradation is also associated with environmental 

pressures. Pollution from agriculture, industry, and urban land use can exert harmful pollution loads, 

increasing ecological stress. The chytrid fungus, a globally recognized and threatening pathogen, has 

devastated amphibian populations worldwide, adding to the list of anthropogenic pathogenic threats. Each 

of the connected drivers can work together to increase the threats of extinction risk for amphibians and 

demonstrates the need for conservation that is integrated and models of predictive risk assessments. 

Estimating Extinction Risk Accurately  

Estimating extinction risk accurately is essential for conservation prioritisation, policy development, and 

resource allocation. There are boxes such as the IUCN Red List that provide a framework, but they put a lot 

of emphasis on expert elicitation and deterministic threshold which can oversimplify biology (Akçakaya et 

al., 2000; Gayathiri & Nithyakalyani, 2019). Such oversimplification is particularly a problem where actions 

to conserve critically endangered amphibians are often delayed due to data deficiency as a result of missing 

observations and information and can increase the chance of unnoticed extinctions. Recent research has 

highlighted the importance of demographic variability, ecological traits specific to a species and 

environmental stochasticity in extinction modeling (Brook et al., 2000). Especially for amphibians that have 

low dispersal ability and narrow thermal tolerance compared to other animals, they are going to be at an 

increased risk from changes in the landscape and climate (Ficetola et al., 2015; Saidova et al., 2024). Factors 

associated with extinction risk can be complex and interacting, therefore requiring a modeling framework 

that incorporates uncertainty into models, and accommodates missing data along with probability based 

estimates. Quantitative risk assessments with real-time tracking and updating of environmental and 

ecological variables will be very important in improving conservation decision-making (Murray et al., 2017; 

Mustapha et al., 2017). 

 

Figure 1(b). Bayesian Extinction Risk Estimation 

The figure (Figure 1(b)) represents the essential components of the Bayesian modeling pipeline 

used for extinction risk estimation. The process starts in the Input Layer, which includes sighting records, 

observation effort, and habitat information—key forms of ecological and observation data. These inputs are 

processed in the Processing Block, where the Bayesian modeling framework assumes credible prior 

knowledge and uses likelihood functions to construct a coherent probabilistic model. The final Output 

represents the posterior extinction probabilities, which summarizes the likelihood of species extinction 
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based on what was observed. In this way, the pipeline's modular architecture allows inference to be 

systematic and can be updated in a dynamic manner when additional data become available. 

Introduction to Bayesian Framework as a Methodology 

The Bayesian framework has developed as a powerful strategy to refine extinction risk modeling, particularly 

in situations with limited data and significant uncertainty, and it is an alternate strategy to traditional 

statistical models (McCarthy & Masters, 2005; Jaiswal & Pradhan, 2023). One of the primary weaknesses of 

traditional frequentist statistics is the inability to incorporate our prior knowledge—such as expert opinion, 

historical sightings, and even data from phylogenetically similar species—into extinction risk estimates; with 

Bayesian models, we can infer extinction risk estimates and update them with new information (Dennis et al., 

2019). Frequentist statistics establish static inferences when information is retrieved; for some animals such 

as amphibians that are only observed infrequently or have limitations on sighting opportunities, this makes it 

difficult to generate definitive population assessments and explore patterns of extinction risk variation. 

Bayesian hierarchical models allow researchers to explore risk within an individual species as well as across 

ecological groups, while accounting for functional traits related to shared life-history characteristics (e.g., 

exposure to breeding occurrences in pond habitats) or shared exposures (Olivieri et al., 2012). For example, a 

Bayesian extinction model can generate estimates, including the modelled probability, that a frog species has 

gone extinct after 30 years with no sighting, while also accounting for sampling effort, habitat quality, and 

observation error. The Bayesian perspective also provides full posterior distributions of extinction 

probabilities vs. single point estimates, which provides more information for risk communication and 

scenario-based planning (Lee et al., 2017; Safavi & Omidi, 2015) The probabilistic perspective also supports 

decisions that could differentiate between species likely already extinct vs species that might still exist but 

require immediate surveys. The inclusion of ecological realism in a statistically rigorous and adaptive 

framework offers a satisfying way to overcome the shortcomings inherent in the current approaches to 

extinction modeling of critically endangered amphibians. The Bayesian approach creates a more robust 

prediction while responding better to the needs of conservation, such as accountability, adaptability, and 

efficient prioritization in circumstances of uncertainty and rapid change. 

The rest of this paper is organized as follows. Section II provides more detail about classic methods for 

estimating extinction risk, as well as a short introduction to Bayesian statistics and its rising relevance and 

use in conservation biology. Section III details the data collection plan and describes the proposed Bayesian 

model, as well as any underlying assumptions and assumptions. Section IV details the results of the study, 

focusing on a comparison made between the Bayesian estimates and traditional estimates, and model 

performance using some key statistical metrics. Section V provides a discussion on the findings, 

acknowledges some limitations of the method proposed in this paper, and suggests future areas for research. 

Lastly, Section VI summarizes the contributions of the paper and its implications for the development of 

conservation strategy and policy using a Bayesian framework. 

Background 

Explanation of Traditional Methods for Estimating Extinction Risk 

Conservation biologists have historically relied on standard techniques for evaluating extinction risk, 

especially when prompt action is required for species facing rapid decline. Among these, Population 

Viability Analysis (PVA) is paramount; it integrates demographic parameters to forecast extinction 

likelihood across generations (Brook et al., 2000). While PVA furnishes critical projections of population 

trajectories, its predictive power is contingent on the presence of longitudinal datasets—an asset notably 
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scarce for critically endangered amphibians. The IUCN Red List provides a complementary framework by 

stratifying species risk according to prescribed quantitative thresholds. This system enjoys global 

endorsement, yet it often draws on limited datasets that, for taxa with low abundance or rare detection, can 

understate the true extinction risk (Butchart et al., 2006). Because a number of amphibians occupy remote 

and inadequately surveyed habitats, monitoring coverage is uneven, compounding gaps in demographic 

knowledge. Consequently, standard methodologies frequently yield extinction probability assessments that 

are either incomplete or unduly conservative (Gilvaei et al., 2014). Such limitations become especially 

pronounced for taxa that have not been detected in recent temporal windows. Absence of observation may 

signify genuine local extinction, yet it may equally stem from inadequate field effort or the species’ cryptic 

life history. Deterministic modelling approaches, constrained by fixed parameter assumptions, frequently fail 

to incorporate these ambiguities, thereby undermining the robustness of inferred extinction risk (Boakes et 

al., 2015; Aghazadeh et al., 2016). 

Bayesian Statistics and Their Role in Conservation Biology 

Bayesian statistics furnish a robust analytic framework for managing uncertainty, particularly when data are 

limited or fragmented. In contrast to frequentist methods that yield deterministic point estimates grounded 

solely in observations, Bayesian inference merges pre-existing knowledge with current data to refine beliefs 

regarding a parameter—in this instance, the probability of species extinction (Gelman et al., 2013). The 

capacity to integrate prior knowledge constitutes the Bayesian method’s principal strength. Researchers may 

embed expert assessments of life history traits, historical demographic patterns, or ecological tolerances 

within the model, thereby producing more robust estimates even when extensive field-collected data are 

absent (Kéry & Schaub, 2012). Furthermore, Bayesian analyses yield comprehensive probability 

distributions, transcending binary classifications of extinction risk and allowing for a richer portrayal of the 

uncertainty surrounding a species’ future. The framework also exhibits remarkable adaptability. When new 

data arrive—such as recent detection records or shifts in habitat conditions—the Bayesian model permits 

continuous revision, rendering it particularly valuable for taxa experiencing rapid conservation status 

transitions (Link & Barker, 2010). In the case of critically endangered amphibians, whose elusive detection 

and irregular monitoring compound uncertainty, this iterative capacity empowers conservation practitioners 

to formulate and revise management actions with heightened confidence. Hierarchical Bayesian models can 

analyze multiple species concurrently, revealing common trends among taxa while accommodating species-

specific deviations (Clark, 2005). Such features render these models particularly appropriate for amphibian 

assemblages, which frequently confront analogous pressures—disease, habitat degradation, and climate 

alteration (Collen et al., 2016). 

Previous Applications of Bayesian Models in Extinction Risk Assessment 

Bayesian frameworks for assessing extinction risk have gained prominence over the past twenty years for their 

ability to merge empirical data with prior ecological knowledge. A landmark contribution by (Solow, 1993) 

formulates extinction likelihood from sequential observation records. Subsequent enhancements that 

incorporate detection effort and observation uncertainty have broadened its use to taxa that are rare or 

habitually secretive (Jarić & Roberts, 2014). Most recently, employed Bayesian methods to evaluate 

extinction probabilities in freshwater fish and amphibians with decades of no confirmed records. Their 

findings indicated that many of these taxa were almost certainly still alive but under-surveyed, underscoring 

the need for expanded sampling. Building on this, implemented multi-level Bayesian models to quantify 

extinction risk for several hundred bird lineages, illustrating the technique’s capacity to manage large, 

hierarchically structured data while delivering precise predictive uncertainty. Collectively, these investigations 
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affirm that Bayesian extinction models yield more reliable risk assessments and inform conservation 

prioritization with greater rigor. When adopted for amphibian taxa, such models present a statistically sound 

and ecologically relevant alternative to traditional risk metrics, adeptly accommodating uncertainty and 

directing timely conservation actions. 

Methods 

Description of data collection process for critically endangered amphibians 

To build this study, we started with a focused group of 50 amphibian species that the IUCN lists as Critically 

Endangered. The team picked each species based on its IUCN ranking, the date of the last confirmed 

sighting, and its known habitat range. For every species, we gathered information on the year of the last 

verified sighting, the total number of historical observations, the area of its habitat, the range of elevations it 

occupies, and the main threats it faces, such as disease outbreaks or changes in land use. We complemented 

the field information with museum specimens, regional biodiversity databases, and published literature. To 

address gaps in sampling across different years and regions, we created a metadata layer that shows the level 

of observation effort year by year and by location. Species with fewer than three dependable sighting events 

were left out of the analysis to limit the chance of introducing too much uncertainty into the models. 

Although complete demographic data were often missing, we included certain ecological traits like body 

size, clutch size, and preferences for specific microhabitats, whenever those data were accessible. Since 

conventional population surveys were impractical for many of these species, we focused on drawing 

inferences from the sighting records and relevant environmental variables, rather than counting individuals 

directly. 

 

Figure 2. Bayesian Model Workflow for Amphibian Extinction Estimation 

This figure (Figure 2) shows the computational flow of a Bayesian method for modeling extinction 

probability for critically endangered amphibians. The starting point is the compilation of raw sighting data 

(the basis for observation), which is then modeled using a detection model to account for imperfect 

detection in the field, prior to maximum likelihood estimation. The likelihood is then modeling, which is 
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essentially the probability of the data given some extinction process parameters. The likelihood and prior 

distributions, based on existing biological knowledge or expert opinion, are then incorporated with Bayes’ 

Theorem into a posterior distribution. Posterior calculations further refine the probability space which 

accounts for data and the effect of previous observations and biological knowledge into a measure of 

probability. Extinction risk can then be calculated directly from the posterior to provide a metric of data-

informed probability that is flexible and easily understood, aiding conservation decisions in an uncertain 

world. 

Explanation of Bayesian model used to estimate extinction risk 

To figure out how likely it is that a species has disappeared when we haven’t seen it lately, we built a 

Bayesian model that looks at how long species last from the years when we did catch them. Our model says 

that species vanish at a steady rate, a bit like raindrops falling at regular intervals, and when they’re still 

around we see them at random moments.  We call the years when we spotted the species 𝑦 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, 

where 𝑡𝑛 is the last year we definitely spotted it. If 𝑇 is the present year, we want to find the updated chance 

𝑃(𝐸 ∣ 𝑦) that the species has already vanished, using the years we’ve kept records. 

Let’s break it down: 

- 𝜆 is how often we expect to see the species, and we’ll say it doesn’t change over the years. 

- 𝐸 means the species disappeared, but we don’t know exactly when—just that it went away sometime after 

time 𝑡𝑛 but before or when we stopped looking, which is time 𝑇. 

- 𝜃 is the chance the species was already gone when we got to time 𝑇. 

If we assume the species actually disappeared at time 𝜏, then the chance of the sightings 𝑦 happening 

is: 

𝑃(𝑦|𝜏, 𝜆) = 𝜆𝑛𝑒−𝜆(𝑡𝑛−𝑡1) ∙ 1[𝑡𝑛<𝜏≤𝑇]               (1) 

To account for the uncertainty in extinction timing, we will place a prior on 𝜏. A uniform prior over 

[𝑡𝑛, 𝑇] means we have no strong prior belief about the extinction date within that window.  

𝑃(𝜏) =
1

𝑇 − 𝑡𝑛
                                                 (2) 

Using Bayes’ theorem, we can combine the likelihood with the prior, so that we have the posterior 

distribution of extinction time 𝜏 above: 

𝑃( 𝜏 ∣∣ 𝑦 ) ∝ 𝑃( 𝑦 ∣∣ 𝜏, 𝜆 ) ⋅ 𝑃(𝜏)                          (3) 

In the previous section, we marginalized over 𝜏, and estimated the extinction probability as: 

𝑃( 𝐸 ∣∣ 𝑦 ) = ∫ 𝑃( 𝜏 ∣∣ 𝑦 )𝑑τ                                
𝑇

𝑡𝑛

(4) 

The posterior value represents the model’s estimate of extinction risk. For practical purposes, we 

identified species with 𝑃(𝐸 ∣ 𝑦) > 0.95 are “likely extinct,” and those with lesser probabilities are 

interpreted as “possibly extant but missing.” 
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The Model's Key Variables and Parameters 

The model includes a few primary parameters and variables. The primary variable in the model is the 

sighting year vector 𝑦, which captures the spatial-temporal distribution of observations. The sighting rate, 𝜆, 

was set as a latent variable, inferred based on species that exhibited similar detection trends. The extinction 

window [𝑡𝑛, 𝑇] captured the time window in which the extinction could have occurred. Additional auxiliary 

variables, including habitat range, disease pressure, and altitude, were incorporated into a secondary 

regression model to examine the influence of covariates on extinction probability. The auxiliary covariates 

were not part of the primary Poisson model for sightings but were included subsequently to facilitate 

interpretation and identify patterns. This formulation allowed the extinction risk to be represented not as a 

fixed value, but as a distribution of possible outcomes, which helps provide full transparency and flexibility 

for conservation decision-making. 

Results 

Predicted extinction risk for critically endangered amphibians 

A Bayesian time-to-extinction model was used to determine extinction probabilities for a set of 50 critically 

endangered amphibian species. The model produced a posterior probability of extinction for each species, P 

(E∣ y), derived from the number of sightings and the timing of those sightings. Of the 50 species assessed, 18 

were assigned high extinction probabilities (>0.95), indicating that there is strong evidence to suggest these 

amphibians may already be extinct. An additional 21 species had moderate extinction probabilities 

(0.50<P(E∣y) <0.95), suggesting elevated risk but uncertainty, usually due to a long absence of sightings or 

rare sightings and low effort to observe. The remaining 11 species had extinction probabilities below 0.50, 

indicating reasonable chances of persistence due to a lack of recent sightings. Amphibian species that were 

distributed in narrower habitat patches, with narrower altitudinal ranges, and with few historic observations 

were more likely to show higher extinction probabilities. Conversely, those amphibians that used a wider 

ecological niche and had many historic sightings had lower extinction probabilities. Even some species that 

had not been seen in more than 30 years had survival probabilities greater than 0.30. Overall, the findings 

demonstrated that the model was able to avoid making overly pessimistic conclusions about some species 

based solely on observational gaps. 

 

Figure 3. Estimated Extinction Probability for Each Species 

0

0.2

0.4

0.6

0.8

1

1.2

Extinction Probability



Natural and Engineering Sciences        263 
 

The bar graph (Figure 3) quantifies posterior extinction probabilities for a subset of the studied 

critically endangered amphibians. Each species is represented by a bar sorted in a descending scale of 

estimated risk. The graph shows a clear stratification with some species, like Atelopus zeteki and 

Plectrohyla teuchestes, displaying probability statistics above 0.95 indicating more than likely extinction.  

Other species, like Phyllomedusa azurea and Leptodactylus fallax show probabilities indicating they may 

still persist, despite large gaps in sightings. The plot allows the issue of identifying species that may need 

more systematic surveys or reassessments to be better prioritized; species that may need increased 

monitoring - not presumed extinct. 

Comparison to Traditional Estimation Approaches 

Some noticeable differences were noted when comparing the Bayesian results to IUCN status classifications 

and classifications based on expert judgments. In particular, 6 species that were assigned a classification of 

''Possibly Extinct'' in the IUCN framework were assigned relatively low extinction probabilities in the 

Bayesian modelling (often because of known detection effort or because they still had suitable habitat 

available). However, 9 species were classified by experts as ''Critically Endangered'' and were assigned greater 

than 0.95 extinction probabilities suggesting they may need to be updated to ''extinct'' or at least ''possibly 

extinct''. In order to quantitatively compare the classification of the Bayesian model to traditional methods, we 

created a confusion matrix using expert judgement, with Bayesian outputs binarized at a threshold of 0.95. We 

then calculated Precision (P), Recall (R), and F1-score, which are defined as: 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                           (5)   

Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                               (6) 

F1-Score: 

𝐹1 =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
              (7)  

The Bayesian model in this study achieved 0.87 precision and 0.92 recall when compared with the 

expert categorizations, yielding an F1-score around 0.89. This shows a strong agreement, but also underscores 

the uncertainty captured by the Bayesian model and not explored by the binary classifiers. 

This clustered bar chart (figure 4) shows the extinction risk groupings produced with the Bayesian 

model alongside current IUCN classifications. The data summarize each species that is labeled as “Critically 

Endangered” (CR) or “Possibly Extinct” (PE) and how many are in low (<0.5), moderate (0.5–0.95), or high 

(>0.95) Bayesian probability bands. The plot demonstrates a few mismatches. For example, some PE species 

in the IUCN model have quite a moderate and low extinction probability bands in the Bayesian model. There 

are also CR species which cross the high extinction probability in the IUCN system sub-divisions. These 

discrepancies help demonstrate an added layer of granularity and probabilistic nuances that extinction risk 

assessments can gain from using a Bayesian modelling framework, especially if data are more limited and 

ambiguous. 
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Figure 4. Comparison of Bayesian Estimates vs. IUCN Status 

 

Figure 5. Precision, Recall, and F1 Score of Bayesian Model 

We can see the bar chart (Figure 5) below for three standard performance measures—precision, 

recall, and F1 score—to measure the Bayesian model's correspondence to expert extinction 

classifications. The model's high recall (0.92) indicates it successfully captured nearly all species true 

experts would consider likely extinct.  The precision (0.87) represents the proportion of animals 

predicted extinct by the model that are also agreed on as extinct by experts. The F1 score (0.89), the 

combination of precision and recall, validates the overall balanced performance of the model. The 

results suggest that while the model exhibited high sensitivity and reasonable reliability when capturing 

true extinction events, the model maintained a low false positive rate. 

Accuracy and Reliability of the Bayesian Approach 

The reliability of the Bayesian framework was examined through posterior predictive checks and leave-one-

out cross-validation (LOO-CV). The models were assessed for internal consistency by simulating sighting 

data from the posterior and comparing the simulated data against the observed patterns. Posterior Bayesian 

credible intervals for extinction probabilities converged to relatively narrow ranges for species with frequent 

historical sightings, while credible intervals widened considerably for species with fewer records (to an 

appropriate level based on uncertainty propagation). Multiple iterations of sighting records and observation 

effort weights were perturbed for the sensitivity analysis to evaluate robustness. For most perturbations, 

extinction model estimates varied little at ±0.05 indicating the model was not oversensitive to small variations 

in input data. This is particularly valuable when working with separated and sometimes noisy ecological data. 

The other aspect of value in using posterior distributions (and not fixed values), is that uncertainty was able to 
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be quantified, and put policymakers in a stronger position for decision making when faced with estimation of 

extinctions that were in different states of knowledge: some (who were well-supported) worth mooring an 

investment in research; others (requiring further investigation). The granularity of this type makes the 

Bayesian method has specific value in conservation contexts where there is need for rapid (adaptive) 

responses but either incomplete or evolving data. 

 

Figure 6. Sensitivity Analysis of Extinction Probability under Observation Uncertainty 

This line graph (Figure 6) demonstrates how extinction probabilities for two representative species 

vary with changes in assumed observation effort. As expected, for lower observation effort (that is, for 

example 50%), the extinction probability estimates decreased—indicating that there is greater uncertainty in 

the assessment of species presence/absence. Once observation effort increases, the model detects and is 

more confident when there is no detection of a species that it could in fact be and is extinct. For a higher-

risk species such as Atelopus zeteki, the extinction probability increases steeply at even low to moderate 

survey intensity compared to other species. For a moderate risk species like Telmatobius espadai, the 

increase is comparatively slow. This figure also highlights the model's ability to account for sampling biases 

and again, shows that the extinction risk estimates can and will vary depending on the survey effort applied, 

which is an important consideration in planning field studies/field-based conservation. 

Discussion 

Understanding Results for Conservation Purposes 

The results from this study create an alternative way for evaluating extinction risk for critically endangered 

amphibians. Unlike a threshold-based approach that allows only for categorical evaluation of extinction risk, 

Bayesian techniques provide a more nuanced output that assists decision-making by yielding probabilistically 

- based predictions. This probabilistic framing allows a ranking of conservation status based not only on the 

species' current IUCN rating, but also based on the probability of being extinct given availability of data. For 

example, the species that had not been sampled for over 30 years had moderate probabilities of survival, 

indicating that these species may have warrant more consideration in conservation strategies than was 

previously assumed. These findings are useful when resources are limited. Species that are most likely to be 

extinct may lead to diversion of resources towards habitat management or possible de-extinction studies, 

whereas those species with uncertain, but non-trivial probability(?), could lead to urgent field surveys. In 

addition, findings support the role of fragmentation and low detectability on potential bias on conventional 

approaches to extinction risk assessment. By modelling uncertainty, this approach provides more transparency 
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to the initial when assessing extinction risk and should allow for more meaningful decision making through 

the planning phase of conservation activities. 

Possible Constraints of the Bayesian Approach  

Like all approaches, the Bayesian approach has its limitations. One of the biggest limitations relates to the 

input data quality and completeness. Many amphibian species have very heterogeneous sighting histories and 

are often reported inconsistently over time and space. In those cases, posterior estimates can be very sensitive 

to our assumptions regarding prior distributions or observation effort; even though sensitivity analysis is 

useful for standing in place of this concern, our conclusions can be swayed by less-than-perfect data quality. 

A second limitation is that the model relies chiefly upon temporal sighting records without incorporating 

ecological covariates directly into the extinction process. Certain factors (e.g., habitat deterioration, climate 

changes, variation in pathogens) were only accounted for indirectly or post hoc. This limits the ability of the 

model to extract causal factors of extinction which are important for developing concepts for proactive 

conservation actions. Additionally, despite the Bayesian framework being well suited for estimating 

extinction risk, it requires enough computational power and statistical expertise, which may be limited for 

smaller conservation teams or for field-oriented organizations. 

Suggestions for Future Research and Use 

An area for future research that would improve the current studies would be to expand the Bayesian 

framework to incorporate spatial and ecological variables directly into the extinction model. For example, 

linking sighting probabilities with habitat conditions, land-use changes, or disease burden would enhance 

each model’s predictive and biological fidelity. Likewise, creating modular models that enable users to plug-

in ecological covariates would offer greater flexibility and useable relevance. It is also getting more 

organized and systematic efforts of conservation databases to not only collect, but also store and add to 

metadata for search area and how the search area was searched, would vastly improve the accuracy of these 

estimates. As countless more stories of anomalies, through a range of platforms, are generated and posted—

particularly through community science and automated acoustic or environmental DNA surveys—the 

Bayesian model is updated instantly and in real-time, for every species at risk. In practical terms, 

conservation organizations may elect to utilize these probability estimates as a decision-support tool to help 

with their decision-making. Instead of relying only on binary scenarios, they may use extinction probabilities 

to prioritize field surveys, fund areas to where the uncertainty is greatest, and assess classification decisions 

with greater transparency. Over time, adaptive and probabilistic tools, like these, could accumulate in 

national or regional planning tools to help prevent potential unnoticed, extinctions associated with the 

vulnerability of amphibians to threats exerted by environmental conditions that deplete amphibian 

biodiversity. 

Conclusion 

In summary, the present study illustrates the value of a Bayesian framework to provide an enhanced 

quantitative and finely-pitched understanding of extinction risk for critically endangered amphibian species 

compared to traditional methods. By incorporating time-since-first-sighting data while also explicitly 

modelling uncertainty, the framework provided a probabilistic estimate of extinction which considered both 

periods of non-observation and differences in survey effort. What became clear from the results was that 

while some species may be extinct, some species with this designation may be at risk but still exist. As such, 

it is vital that conservation responses are nuanced when there is uncertainty, rather than universally applying 

conservation measures. This issue is complicated further by the disparity between both the model's outputs 
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and IUCN listings that are static and not dynamic. This suggests to us that conservation policy decisions need 

to increasingly move into a space that considers dynamic processes that weave data and uncertainty together. 

Ultimately, the Bayesian model may provide an opportunity for species to be targeted for monitoring, field 

surveys, or protected if their location can be determined; indeed, this modelling approach enables 

practitioners to concentrate resources in areas of uncertainty, but also species that have a higher chance of 

survival than extinction. Baking in a Bayesian approach into conservation policy not only would improve the 

accuracy of extinction risk assessments, but also having a more transparent, responsive decision-making 

process in a rapidly changing world. Given the accelerating loss of biodiversity cited in the introduction, be it 

amphibians or otherwise, a shift from 'non-probabilistic' methods to probabilistic methods using the Bayesian 

framework tis an important advancement of conservation science and policy, improving not only the ability 

of stakeholders to act on species that may only exist in small spatial extents before they 'disappear,' but 

collective action as a scientific community. 
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