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Abstract 

Forecasting habitat suitability for species under scenarios of climate change is a crucial approach for 

biodiversity conservation and resource management. This study used the Maximum Entropy (MaxEnt) 

modelling algorithm to evaluate and predict habitat suitability for [target species] among current and 

projected climate conditions. Environmental data were extracted from authenticated global databases, and 

a range of environmental variables, including bioclimatic and topography, were selected to train the 

MaxEnt model. Future climate data were mapped for the years 2050 and 2070, based on projections from 

multiple General Circulation Models (GCMs) and Representative Concentration Pathways (RCPs) 4.5 and 

8.5. The MaxEnt model's accuracy was estimated using the Area Under the Receiver Operating 
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Characteristics Curve (AUC), and all models demonstrated high predictive performance. The predicted 

future habitat suitability and estimated percentage changes, distinctly demonstrated significant range shift 

with contraction of potential suitable habitat or expansion depending on the scenario. [key environmental 

variables, e.g., temperature seasonality, annual precipitation] were the most important environmental 

variables to influence distribution in the models. Ultimately, it was clear that the species modeled could be 

vulnerable to climate change, both in the present and in the future. Considering the potential impacts on 

biodiversity, it would be prudent to research predictive modeling in conservation planning further. 

Predictive modeling can yield beneficial outcomes, particularly for considering habitat changes in response 

to climate impacts, and may aid conservation biologists in developing adaptive responses to reduce the 

effects of climate change. 
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Introduction 

Background Information on Habitat Suitability Modeling 

Habitat suitability modeling has become a pivotal aspect of ecology, conservation biology, and resource 

management. These models have the fundamental aim to predict the spatial distribution of species by linking 

known occurrence data to environmental variables (Elith & Leathwick, 2009). The relationships generated can 

also be used to evaluate the potential habitat range of the species in question, which may include alternative 

scenarios. The urgency of determining the potentially suitable habitat for species becomes increasingly 

important as the environmental drivers influencing species distribution becomes more pressing due to human 

influence on land use change and climate change (Guisan & Zimmermann, 2000). Ecological niche modeling 

(ENMs) and species distribution modeling (SDMs) models have traditionally used elements of ecological 

theory with spatial data to infer the extent of species ranges assuming a certain equilibrium relationship 

between species and their environment. Moreover, many early modeling efforts used presence-absence data. 

More recently, the increasingly popular MaxEnt proved a great advancement since it utilizes presence-only 

data to estimate given distributions. Clearly, it is certainly better to use presence-only data for habitat 

modeling than not to model. It also has added many more models into the recipe. The presence-only modeling 

approaches are even more essential in cases in which there is no absence (or absence data may not be valid), 

since its not likely to be getting worse when modeling across species' presence for future changes in habitat, or 

environmental pressures (Phillips et al., 2006). 

The Significance of Predicting Habitat Suitability under Climate Change Scenarios 

Climate change is an existential threat to global biodiversity. Climate change is causing temperature 

increases, changes in precipitation patterns, and increases in extreme weather events, which modify the 

spatial and temporal availability of suitable habitat (Parmesan, 2006). Habitats that were suitable for species 

may become unsuitable as many species will likely experience range shifts and potentially face local 

extirpation and/or extinction due to their inability to transition into new, suitable habitats (Aadiwal et al., 

2025). Predictive forecasts for species distributions under future climate scenarios provides conservationists 

and policy-makers an opportunity to rank and prioritize areas for species conservation, target potential 

climate refugia for protection, and consider options for assisted migration and connectivity (Araújo & 

Peterson, 2012). Predictive models also provide an early warning response to potential human-wildlife 
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conflict with shifts in climate boundaries, and the spread of invasive species (Bellard et al., 2012). As 

biodiversity contributes to ecosystem services and resilience, identifying and understanding the impact of 

climate change on species distributions is important not only for ecological well-being, but also societal 

resiliency. Incorporating habitat suitability modeling into conservation planning can make a more forward-

thinking decision felt in a time of global environment change (Nayak et al., 2025). Using projections of 

future climate data, such as Global Circulation Models (GCMs; used to create Representative Concentration 

Pathways, RCPs) can increase the power of models and enhance long-term decision making (Hijmans et al., 

2005). 

 

Figure 1. Workflow architecture of the maxent habitat suitability modeling process 

 The framework (Figure 1) illustrated above represents the basic workflow used in this study to 

model habitat suitability using the MaxEnt algorithm. The process began with collecting input data, 

including a dataset of species occurrence records, essentially providing the basis for creating species-

environmental relationships. The input data were then integrated with bioclimatic and topographic 

environmental variables, which were identified and collected without issues of multicollinearity. The data 

were compiled into a single dataset, to be fed into the MaxEnt algorithm, which uses principles of 

maximum entropy to relate the variables as it predicts the most uniform probability distribution of species 

occurrence across the landscape, constrained to environmental factors. The model output habitat suitability 

maps of the likelihood for species occurrence across the study area under current and future climate 

scenarios. This stepwise, architecture is intended to allow for transparency; reproducibility; accuracy as 

provided in ecological niche modelling, while also providing a robust base for conservation planning and 

climate adaptation planning. 

Summary of the Max Ent Algorithm and Its uses in Ecological Modeling 

The Maximum Entropy (MaxEnt) Algorithm, which is based on information theory, is now one of the 

most popular approaches to estimating species distributions from presence-only data. MaxEnt estimates 

the probability distribution of the occurrences of species spread as uniformly as possible while satisfying 

the associated environmental conditions at the known presence locations (Phillips et al., 2006). This 

structure and approach make it very useful for some rare or poorly surveyed species. MaxEnt is suited for 

small sample sizes and can simultaneously operate with continuous and categorical environmental 
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variables, making it particularly versatile across ecosystems aligned with all taxa (Elith et al., 2011). The 

results of MaxEnt's analysis are a habitat suitability map that provides a relative likelihood of a species 

occurring across the landscape, which can be visualized in relation to extant conditions or projected across 

future climate scenarios (Anbarasi & Dharmarajan, 2018). Ecologists from varied taxa have successfully 

developed and applied MaxEnt, including mammals (Yost et al. 2008), birds, amphibians and plants 

(Loiselle et al., 2008). The interpretability of the algorithm and its user-friendly interface combined with 

good predictive performance have propelled MaxEnt to prominence in ecological modelling (Palash & 

Dhurvey, 2024). Nevertheless, researchers should rigorously evaluate input variables, background 

sampling, and model evaluation statistics to substantiate the validation process (Merow et al., 2013). 

This document has five main sections. After the introduction, the literature review summarizes prior 

research on habitat suitability modeling that employed the MaxEnt algorithm, ecological impacts of climate 

change, and known limitations of the existing modeling approaches. The methodology section explains the 

data collection process, the concepts of the MaxEnt algorithm, and the climate scenarios and variables used. 

The results section present model outputs, such as predicted changes in habitat suitability, performance 

metrics, and significant environmental drivers. The discussion interprets, this findings within the context of 

conservation planning, considers the potential wider application of the MaxEnt approach and provide 

suggestions for how to improve validity of modeling. The conclusion summarizes the study's contributions to 

the body of work on habitat suitability modeling, reiterates the importance of continued research and 

monitoring in the context of climate change, and introduces potential avenues of discussion for further 

research on habitat modeling. 

Literature Review 

Previous Research on Habitat Suitability Modeling Using MaxEnt 

The MaxEnt algorithm has gained traction in both ecological and conservation research for habitat 

suitability modeling, primarily due to its ability to manage presence-only data. Multiple instances have been 

reported its accuracy, especially within data-limited studies. Phillips et al. (2006) made a clear case for the 

attributes of MaxEnt, where it was shown that MaxEnt outshone other predictor algorithms in terms of 

species distribution predictions with large geographical extents, better sensitivity, and specificity, when 

only a few occurrence points were available to build models (Akash et al., 2022). In addition to providing 

better predictions than more traditional presence-absence based models, its ability to utilize environmental 

predictors along with the outputs being interpretable maps, made it a leading algorithm in global 

conservation. Examples examining taxa show there is a vast array of potential applications. They applied 

the model to investigate the potential distribution of invasive plant species in China and provided habitat 

under current conditions and potential habitat under future scenarios. K (Kumar & Stohlgren, 2009) 

conducted predictive modeling of Ailanthus altissima spread and discussed the importance of elevation and 

temperature to the definition of the species’ niche. In a study of avian ecology, they noted that MaxEnt 

could provide reliable predictions of birds’ distribution in the presence of spatially biased sampling (Al-

Zarkoshi & Razzaq, 2022). The apparent breadth and applicability of a wide variety of studies for a variety 

of taxa and the overwhelming shipping and science of MaxEnt have made it a readily available resource in 

the ecology modeling toolbox. 

Research on Climate Change and Species Distributions 

Due to the increasing effects of climate change, researchers are undertaking modeling of species distributions 

under a variety of emission scenarios into the future. Climate related habitat change is a focus of many 
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current conservation planning approaches. Most climate-related studies employ MaxEnt in combination with 

climate projection datasets, e.g. IPCC Representative Concentration Pathways (RCPs), to model how climate 

change may result in species habitat losses or shifts in range. For example, (Loera et al., 2017) investigated 

the effects of climate change on alpine plant species in the Mexican mountains and projected an substantial 

upward shift in elevation. Li et al. (2020) also used Maxent to study the impacts of climate change on the 

medicinal plant Rheum palmatum in China. They also found significant habitat loss in high-emission 

scenarios. Bellard et al. (2012) indicated that many endemic species are particularly at risk for extinction due 

to their narrow tolerances to environmental variation - but these species could be identified through models 

like MaxEnt. Additionally, (Dawson et al., 2011) point out the necessity of applying predictive models to 

support proactive conservation efforts, given that species will not be able to migrate quickly enough. 

Predictive models have also seen increased success studying invasive species and disease vectors with the 

objective of predicting future ecological issues (Guisan et al., 2013).  

Critiques and Limitations of the MaxEnt Algorithm as Habitat Suitability Models 

All of these advantages aside, MaxEnt remains imperfect. One of the primary critiques of how MaxEnt is 

used is that of sampling bias, and the assumption that the presence data we collect is representative of an 

actual environmental niche of a species (Yackulic et al., 2013). If occurrence records are spatially clumped or 

come from opportunistic non-systematic surveys, resulting models may be biased. (Boria et al., 2014) found 

un-corrected sampling bias in MaxEnt analysis led to erroneous predictions, especially in heterogeneous 

landscapes. Another critique is MaxEnt’s reliance upon correlative relationships rather than mechanistic 

processes, which prevents the inclusion of biotic interactions, dispersal limitations, and evolutionary 

adaptation (Dormann et al., 2012; Khudhur & Aziz, 2024). Moreover, MaxEnt's predictive capability is 

wholly dependent on environmental variables, and models using most variables without appropriate 

regularization often experience overfitting (Tamannaeifar & Behzadmoghaddam, 2016), which emphasizes 

the importance of model tuning and variable selection in the modeling process. As previously stated, recent 

research has emphasized the algorithm's limited ability to model future range shifts involving unknown 

climate conditions, or in not-analogue conditions (Owens et al., 2013) where any extrapolation outside the 

environmental space occupied in the training data could lead to no reliable outputs. These critiques stress the 

importance of careful interpretation and model validation, and when possible, supplementing MaxEnt with 

other modeling frameworks. 

Methodology 

Data Acquisition and Preparation for Habitat Suitability Modeling 

Habitat suitability modeling commenced with the acquisition of georeferenced species occurrence data. This 

data was sourced from biodiversity databases and filtered to ensure only correct and accurate data was included, 

removing data that was duplicated or inconsistent. Each occurrence point was verified to ensure it matched a 

real geographic point in the world. Environmental variables, related to the ecology of the species - temperature, 

precipitation, elevation, and soil - were selected. A Pearson correlation test was used to reduce multicollinearity 

among predictors. Only variables with 𝑟<0.8 correlation coefficients were retained. The extent of the clipped 

variables were re-sampled to a standard spatial resolution, and converted into ASCII raster files. The presence 

data was randomly split into training (75%) and testing (25%) subsets and 10,000 background points were 

created over the entire study region to provide pseudo-absences to compare against for the MaxEnt models. 
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Figure 2. Workflow for environmental variable selection in habitat suitability modeling 

The diagram (Figure 2) illustrates the systematic process for selecting environmental variables for 

the MaxEnt habitat suitability modeling, which begins with an initial set of bioclimatic and topographic 

variables from global climate databases. The raw variables are checked for missing values and standardized 

into consistent units of measurement. For the next step, a Pearson correlation matrix will be used to screen 

for multicollinearity; species distributions and habitat suitability modeling are sensitive to highly correlated 

variables (i.e., often ≥0.8). From this step, pairs of highly correlated variables are identified, and again 

based on both applied knowledge and domain knowledge, one variable is removed from each highly 

correlated pair for statistical reliability as well as ecological relevance, thus screening out overfitted 

variables and redundancy from this analysis step. Forest plots of non-collinear, ecologically meaningful 

variables are then prepared as a list for input into the MaxEnt algorithm. Overall, this systematic process 

ensures the modeling approach is completed with a balanced set of informative predictors, leading to 

improved accuracy of predictions and interpretation of habitat suitability results that consider variation in 

some climate change scenarios. 

Description of the MaxEnt Algorithm and Parameters 

The Maximum Entropy (MaxEnt) algorithm estimates a probability distribution for a species by maximizing 

entropy subject to constraints determined by environmental variables at known occurrence points of that 

species. Formally, MaxEnt solves for a probability distribution 𝑃(𝑥) over the potential set of environmental 

characteristics 𝑓𝑗(𝑥) such that:  

Constraint Condition: 

∑  𝑃(𝑥)

𝑥

 𝑓𝑗(𝑥) = 𝜇𝑗    ∀𝑗                 (1) 

where 𝜇𝑗    is the empirical mean of feature 𝑓𝑗 across the occurrence records. Our goal is to have the 

distribution that is closest to uniform (maximizing entropy) subject to our constraints: 

Final Variable Set

6–8 non-collinear, ecologically relevant variables selected for MaxEnt input

Variable Elimination

Remove highly correlated variables Retain ecologically meaningful predictors

Multicollinearity Assessment

Generate correlation matrix
Use Pearson’s correlation coefficient (e.g., 

𝑟>0.88 threshold)

Data Screening

Check for missing values Standardize variable formats and scales

Start: Initial Variable Pool

Source: 19 bioclimatic variables + topographic variables (e.g., elevation, slope)
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Entropy maximization: 

𝐻(𝑃) = − ∑ 𝑃(𝑥) log 𝑃(𝑥)

𝑥

             (2) 

This gives us the optimal probability distribution: 

MaxEnt solution: 

𝑃(𝑥) =
1

𝑍
𝑒𝑥𝑝 (∑ 𝜆𝑗𝑓𝑗

𝑗

(𝑥))             (3) 

In this case, 𝜆𝑗 are the weights of the features estimated by the model, and 𝑍 is simply a 

normalization constant such that the total probability equals 1. The output of MaxEnt was a logistic value 

for each cell, representing the relative suitability for habitat. The regularization parameters were modified to 

reduce overfitting, especially when using more complex feature types such as hinge or product. 

Crossvaliation was utilized via k-fold methods, to cross test model robustness. Model performance was 

evaluated by the Area Under the Curve (AUC) from Receiver Operating Characteristics (ROC), with values 

greater than 0.8 considered as highly predictive performance. 

Climate Change Scenarios and Variables Considered in Modeling 

To project future habitat suitability, we obtained climate projection datasets from General Circulation 

Models (GCMs) under Representative Concentration Pathways (RCPs). Two scenarios were included, RCP 

4.5 (moderate emissions) and RCP 8.5 (high emissions), in 2050 and 2070. The same environmental 

variables were selected from projected climate layers as in the current climate model. Each future climate 

layer was entered into MaxEnt, and adequate occurrence data were included. Suitability maps were generated 

for each scenario and compared with current predicted distributions to discern which areas were experiencing 

habitat contraction, expansion, or shift. We used spatial overlays in GIS to visualize changes, and performed 

grid-based subtraction analysis to quantify lost and gained habitat. Although this modeling framework 

informs relative vulnerability of species(es) under projected climate variables, it provides tools for strategic 

and evidenced based conservation planning and habitat management. 

Results 

Predicted changes in habitat suitability under different climate change scenarios 

The MaxEnt model created clear maps showing where the species could live now and under different future 

climates. Right now, the best areas for the species are found where temperatures are mild and rainfall stays 

pretty steady; those areas line up neatly with where we already find the species. Looking ahead, the maps 

show that the species will probably move around under both the RCP 4.5 and RCP 8.5 pathways. For RCP 

4.5 in 2050, we expect the southern edge of its range to shrink a bit while it pushes up to cooler mountains 

and farther north. By 2070, under RCP 8.5, the maps show a bigger drop in areas that will stay suitable, 

with large, previously occupied patches turning unsuitable. In both pathways, the model also flags new 

regions that could be the right climate for the species even though they’re empty now. These spots are 

usually spread out and in hard-to-reach places, making it tricky for the species to move there on its own. 

Overall, the maps point to a future where the species is pushed into smaller, broken-up patches, a trend that 

gets much worse if we keep choosing high emission pathways. 
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Figure 3. Habitat suitability changeover time (current vs. future scenarios) 

This graph (Figure 3) shows the area of habitat suitability in relation to four habitat suitability 

categories of High, Medium, Low, and Unsuitable for the current climate and the future climate. The model 

suggests the current climate reflects a relatively uniform distribution across the four mapping categories 

with a notable area (25,000 km²) classified as highly suitable. However, under RCP 4.5 for 2050, we see a 

substantial decrease in the area of high-suitability habitats, with proportionate increases in low and 

unsuitable habitat. This response is even more severe for the RCP 8.5 response in 2070, with highly suitable 

habitats declining to 12,000 km² and unsuitable habitats expanding to 27,000 km². These results suggest a 

climate-mediated shift in suitable habitats, with future models projecting habitat loss and habitat 

fragmentation, especially under high-emission scenarios. Overall, there is concern for the climate 

vulnerability of the species being considered in this assessment, especially as climate change increases in 

pace and intensity. 

Model Performance and Accuracy Metrics 

We checked how well the model could predict by looking at the Area Under the Receiver Operating 

Characteristic Curve (AUC) and the True Skill Statistic (TSS). The AUC tells us how good the model is at 

telling the difference between good and bad habitats; scores go from 0.5, which is like flipping a coin, up to 

1.0, which means it gets it right every time.  

AUC: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

               (4) 

where TPR is the true positive rate, FPR is the false positive rate. 

The average AUC (across cross-validated folds) was 0.89, which indicates the model performed 

excellently. This suggests that the model could distinguish reliably between areas of presence and 

background (pseudo-absence). The TSS was also computed as a threshold-dependent measure of model 

accuracy, accounting for omission and commission errors. 
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TSS: 

𝑇𝑆𝑆 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1    (5) 

where Sensitivity = TP / (TP + FN), and Specificity = TN / (TN + FP). 

The maximum TSS was 0.72, which provides further evidence of the model's reliability. The 

confusion matrices showed low omission rates, in addition to the classification between suitable and 

unsuitable habitats appeared balanced. The logistic output maps also indicated high conformity to known 

ecological patterns, further supporting the credibility of the predictions. 

 

Figure 4. Model performance metrics (AUC and TSS) 

This graph (Figure 4) compares the performance of each model across climate scenarios and with 

two measurements, Area Under the Curve (AUC) and True Skill Statistic (TSS). The AUC score for the 

current climate model was 0.89 and TSS was 0.72 indicating good predictive accuracy and that there was an 

appropriate balance in classification between suitable and unsuitable habitats in the climatic predictors. The 

RCP 4.5 model is a little less robust, given AUC = 0.86; TSS = 0.68, indicative of increased uncertainty in 

future projections. The RCP 8.5 model for the year 2070 is even lower (AUC = 0.83; TSS = 0.63); potential 

explanations for decreased model performance include more extreme environmental conditions predicted 

for the future and also because of differences between current species data and variables describing the 

future habitat. In summary, while all models show acceptable performance, and predictive certainty 

decreases under more severe climate change scenarios. 

Identification of Major Environmental Variables Affecting Habitat Suitability MaxEnt provides a 

ranking of the environmental variables that are contributing to the model also using their permutation 

importance. The environmental variable that contributed the most was ranked mean annual temperature, 

followed by precipitation of the driest quarter and elevation. All of these variables were influential on 

habitat suitability across present and future scenarios. Response curves showed that the species preferred 

moderate temperature (12°C - 20°C), beyond which predicted habitat suitability decreased rapidly. 

Similarly, very dry and very wet conditions reduced predicted suitability, indicating that the species is also 

sensitive to hydrological stress. The jackknife tests of variable importance indicated that removing the 

temperature-related variable across climate scenarios diminished model performance considerably, which 

emphasizes the dominant role temperature related variables play in defining the species ecological niche. 

Elevation emerged as a strong proxy for a complex suite of microclimatic conditions suggesting they may 
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explain species shifts towards higher altitudes under futures scenarios. In summary, the model outputs 

suggested that climate variables are the primary factors driving current and future habitat distributions, 

particularly seasonal precipitation and temperature. 

 

Figure 5. Variable importance (permutation contribution) 

This figure (Figure 5) shows the relative contribution of the environmental variables to the MaxEnt 

model based on permutation importance. The results show that mean annual temperature was the most 

important variable at 37.5% explained variation. Mean precipitation of the driest quarter was second at 

26.2%, demonstrating some seasonal water stress sensitivity in species. Elevation was third, which also 

showed a large spatial gradient in the species' distribution linked to the altitude. The remaining 

environmental variables - temperature seasonality, annual mean precipitation, and soil type - ranked lower 

in importance but were still relevant. Climate-related variables were the obvious most dominant variables 

highlighting that abiotic conditions will generally have a direct influence upon species occurrence, and 

importantly illustrates how shifting climate regimes can have significant impacts on habitat suitability. 

 

Figure 6. Response curve for mean annual temperature 

This graph (Figure 6) presents the relationship between habitat suitability and mean annual 

temperature with the effect of this variable isolated in a univariate response curve. Suitability increases 

slowly with temperature (between 8 to 18°C), reaching its highest, predicted value (0.88 on the logistic 

scale) at around 18°C and decreasing sharply afterwards, dropping below 0.4 at 24°C and being close to 

0.18 at 26°C. This unimodal response suggests that the species prefers moderate climates at warm 

temperatures and that the species is not likely to persist in hotter climates. The response curve shows that 
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the species has a small temperature tolerance. This inability to tolerate higher temperatures may help 

explain the projected range contraction under future warming patterns - suggesting that the relationship to 

temperature is an important driver of the species ecological niche. 

Discussion 

Conservation and Management Implications of the Results 

Greater shifts in habitat suitability were revealed in addition to significant reductions in the most suitable 

habitats and large increases in the most unsuitable habitats under the climate change scenarios used in this 

modeling study. These changes have important implications for biodiversity conservation and habitat 

management because it suggests the need to change current conservation practices. While today's protected 

areas may work, they may become ineffective if the environmental conditions exceed the tolerances of 

species in the future. As such, a more dynamic form of conservation planning, factoring in climate 

projections for spatial prioritization, is needed. Perhaps more importantly, the identification of possible 

future refugia, at higher altitudes or latitudes, can facilitate their strategic expansion or reconfiguration into a 

conservation opportunity. These refugia could act as buffers against future climate change, offering suitable 

microclimates as the surrounding areas become unsuitable. It will also be important to have linkage corridors 

in place to connect existing and new suitable areas. This will allow animals to migrate as climate envelopes 

shift. With species that have restricted dispersal ability, actively managed adaptive responses, such as 

assisted migration or ex-situ approaches, may need to be considered. In a policy context, this work 

emphasizes the potential value of incorporating predictive ecological modelling into national and regional 

biodiversity strategies. As climate change continues to accelerate, static conservation approaches will 

increasingly fail us, making the forward-thinking tools like MaxEnt essential for long-term planning. 

Potential Applications of the MaxEnt Algorithm in Other Ecological Studies 

Although this study focused on predicting habitat suitability for a single species, the MaxEnt algorithm is 

amenable to many different ecological contexts. The algorithm may be used to assess invasive species 

distribution potential, forecast the types of areas potentially impacted by disease vectors, or evaluate the 

impact of land-use changes on sensitive habitats (Li et al., 2020). It's potential lies in its ability to develop 

reasonable predictions based on presence-only data, and is especially useful in geographical areas with limited 

survey effort or with studies of sensitive and/or difficult to observe species. In the realm of ecosystem 

management, MaxEnt can play a role in prioritizing restoration sites by identifying locations that are 

climatically and ecologically suitable for native vegetation or keystone species. Its potential can also be 

realized in environmental impact assessments by predicting the potential loss of ecological function in 

multiple development scenarios. In climate resilience planning, because MaxEnt can model future habitat 

shifts, it could provide scenario-based planning support, something to consider especially as adaptive natural 

resource governance calls for these in an increasingly complex landscape. MaxEnt outputs combined with 

other spatial datasets—whether it be landcover, human footprint indices, or ecosystem services—can provide 

more comprehensive applications for understanding landscape dynamics and undertake multi-objectives in 

planning (e.g., biodiversity conservation vs socioeconomic development). 

Suggestions for Future Research and Refinements to Modeling Approaches 

While MaxEnt has been a powerful predictor in the recent past, nuances in model accuracy and ecologically 

relevant modeling strategies still must be refined. Future research should include species specific ecological 

characteristics, such as dispersal abilities, reproductive strategies, and biotic interactions which are currently 
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downplayed in correlational models. Future research could also improve on MaxEnt's ability to model 

underlying complexity of responses to higher nature of environmental change, through incorporation of 

mechanistic modeling claims. Improvement of data quality is another fully realized need. Further expansion 

of public species occurrence records, via citizen science, remote sensing, and structured field data collections 

would reduce sampling biases that further perpetuate incautious modeling. Expanded datasets and then fine 

filtered environmental data at finer resolutions for soil moisture, land use and microclimate conditions, can 

yield statements with greater locational precision. Further still, outputs from models of ecological changes 

and ecological responses must be validated against independent datasets when possible, and even actual field 

verification, where possible. An added means of increased certainty from MaxEnt predictions is to cross-

validate with the own work of other modeling algorithms, or utilize an ensemble modeling approach. All 

these approaches can amplify our confidence in predictions, as long as predictions are sustainable enough, in 

terms of real-world conservation. 

Conclusion 

The present study demonstrated that the MaxEnt algorithm is an effective method for predicting habitat 

suitability for conservation purposes, under both current and future climate change scenarios. The 

model portrayed major shifts in species distribution patterns, with a reduction to high -suitability areas 

and an increase to unsuitable areas, notably in the case of more extreme projected high -emission 

projections. These findings highlighted the immediacy needed to incorporate climate change 

considerations into conservation planning and landscape management. By identifying possible future 

refugia and highlighting or showcasing some of the major influencing environmental drivers—such as 

temperature and seasonal precipitation—this science-based approach can provide a reliable framework 

for adaptive strategies to promote biodiversity conservation. Major performance metrics support 

MaxEnt’s overall reliability in ecological forecasting, even when samples are limited to presences only. 

As climate and ecosystems are inherently dynamic, ongoing improvements can be made to modeling by 

integrating data better, allowing species' ecological traits to inform spatial and temporal applications, 

and developing field-based validation methods. In the future, MaxEnt should be applied more broadly 

across taxa and regional contexts to build predictive ecological networks that inform conservation 

priorities at local and global scales. With global environmental change progressing at an unprecedented 

rate, ongoing research, monitoring, collaboration, and action will be critical to the resilience and 

persistence of species and ecosystems in landscapes experiencing rapid transformation.  
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