ISSN: 2458-8989

Natural and Engineering Sciences

NESciences, 2025, 10 (2): 270-283 doi: 10.28978/nesciences.1763921

Using the MaxEnt Algorithm to Predict Habitat Suitability Under Climate
Change Scenarios

Dr. Debashish Hota " “* | Dr. K Rajasekar?“*' , Tarun Parashar3 “* | Sakshi Sobti 4+ |
Ashutosh Roy > ““" | Dr.P. Ajitha

1" Assistant Professor, Department of Fruit Science, Institute of Agricultural Sciences, Siksha 'O’
Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
E-mail: ddebashishhota@soa.ac.in

2 Assistant Professor, Department of Aerospace Engineering, Faculty of Engineering and Technology,
JAIN (Deemed-to-be University), Ramnagar, Karnataka, India.
E-mail: krajasekar@jainuniversity.ac.in

3 School of Pharmacy & Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand,
India. E-mail: tarun@dbuu.ac.in

4 Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India.
E-mail: sakshi.sobti.orp@chitkara.edu.in

> Assistant Professor, Department of Computer Science & IT, Arka Jain University, Jamshedpur,
Jharkhand, India. E-mail: ashutosh.r@arkajainuniversity.ac.in

8 Professor, Department of Information Technology, Sathyabama Institute of Science and Technology,
Chennai, India. E-mail: ajitha.it@sathyabama.ac.in

Abstract

Forecasting habitat suitability for species under scenarios of climate change is a crucial approach for
biodiversity conservation and resource management. This study used the Maximum Entropy (MaxEnt)
modelling algorithm to evaluate and predict habitat suitability for [target species] among current and
projected climate conditions. Environmental data were extracted from authenticated global databases, and
a range of environmental variables, including bioclimatic and topography, were selected to train the
MaxEnt model. Future climate data were mapped for the years 2050 and 2070, based on projections from
multiple General Circulation Models (GCMs) and Representative Concentration Pathways (RCPs) 4.5 and
8.5. The MaxEnt model's accuracy was estimated using the Area Under the Receiver Operating
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Characteristics Curve (AUC), and all models demonstrated high predictive performance. The predicted
future habitat suitability and estimated percentage changes, distinctly demonstrated significant range shift
with contraction of potential suitable habitat or expansion depending on the scenario. [key environmental
variables, e.g., temperature seasonality, annual precipitation] were the most important environmental
variables to influence distribution in the models. Ultimately, it was clear that the species modeled could be
vulnerable to climate change, both in the present and in the future. Considering the potential impacts on
biodiversity, it would be prudent to research predictive modeling in conservation planning further.
Predictive modeling can yield beneficial outcomes, particularly for considering habitat changes in response
to climate impacts, and may aid conservation biologists in developing adaptive responses to reduce the
effects of climate change.
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Introduction
Background Information on Habitat Suitability Modeling

Habitat suitability modeling has become a pivotal aspect of ecology, conservation biology, and resource
management. These models have the fundamental aim to predict the spatial distribution of species by linking
known occurrence data to environmental variables (Elith & Leathwick, 2009). The relationships generated can
also be used to evaluate the potential habitat range of the species in question, which may include alternative
scenarios. The urgency of determining the potentially suitable habitat for species becomes increasingly
important as the environmental drivers influencing species distribution becomes more pressing due to human
influence on land use change and climate change (Guisan & Zimmermann, 2000). Ecological niche modeling
(ENMs) and species distribution modeling (SDMs) models have traditionally used elements of ecological
theory with spatial data to infer the extent of species ranges assuming a certain equilibrium relationship
between species and their environment. Moreover, many early modeling efforts used presence-absence data.
More recently, the increasingly popular MaxEnt proved a great advancement since it utilizes presence-only
data to estimate given distributions. Clearly, it is certainly better to use presence-only data for habitat
modeling than not to model. It also has added many more models into the recipe. The presence-only modeling
approaches are even more essential in cases in which there is no absence (or absence data may not be valid),
since its not likely to be getting worse when modeling across species' presence for future changes in habitat, or
environmental pressures (Phillips et al., 2006).

The Significance of Predicting Habitat Suitability under Climate Change Scenarios

Climate change is an existential threat to global biodiversity. Climate change is causing temperature
increases, changes in precipitation patterns, and increases in extreme weather events, which modify the
spatial and temporal availability of suitable habitat (Parmesan, 2006). Habitats that were suitable for species
may become unsuitable as many species will likely experience range shifts and potentially face local
extirpation and/or extinction due to their inability to transition into new, suitable habitats (Aadiwal et al.,
2025). Predictive forecasts for species distributions under future climate scenarios provides conservationists
and policy-makers an opportunity to rank and prioritize areas for species conservation, target potential
climate refugia for protection, and consider options for assisted migration and connectivity (Araujo &
Peterson, 2012). Predictive models also provide an early warning response to potential human-wildlife
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conflict with shifts in climate boundaries, and the spread of invasive species (Bellard et al., 2012). As
biodiversity contributes to ecosystem services and resilience, identifying and understanding the impact of
climate change on species distributions is important not only for ecological well-being, but also societal
resiliency. Incorporating habitat suitability modeling into conservation planning can make a more forward-
thinking decision felt in a time of global environment change (Nayak et al., 2025). Using projections of
future climate data, such as Global Circulation Models (GCMs; used to create Representative Concentration
Pathways, RCPs) can increase the power of models and enhance long-term decision making (Hijmans et al.,
2005).

INPUT DATA

ENVIRONMENTAL
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ALGORITHM

N | OUTPUT (HABITAT I

Figure 1. Workflow architecture of the maxent habitat suitability modeling process

The framework (Figure 1) illustrated above represents the basic workflow used in this study to
model habitat suitability using the MaxEnt algorithm. The process began with collecting input data,
including a dataset of species occurrence records, essentially providing the basis for creating species-
environmental relationships. The input data were then integrated with bioclimatic and topographic
environmental variables, which were identified and collected without issues of multicollinearity. The data
were compiled into a single dataset, to be fed into the MaxEnt algorithm, which uses principles of
maximum entropy to relate the variables as it predicts the most uniform probability distribution of species
occurrence across the landscape, constrained to environmental factors. The model output habitat suitability
maps of the likelihood for species occurrence across the study area under current and future climate
scenarios. This stepwise, architecture is intended to allow for transparency; reproducibility; accuracy as
provided in ecological niche modelling, while also providing a robust base for conservation planning and
climate adaptation planning.

Summary of the Max Ent Algorithm and Its uses in Ecological Modeling

The Maximum Entropy (MaxEnt) Algorithm, which is based on information theory, is now one of the
most popular approaches to estimating species distributions from presence-only data. MaxEnt estimates
the probability distribution of the occurrences of species spread as uniformly as possible while satisfying
the associated environmental conditions at the known presence locations (Phillips et al., 2006). This
structure and approach make it very useful for some rare or poorly surveyed species. MaxEnt is suited for
small sample sizes and can simultaneously operate with continuous and categorical environmental
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variables, making it particularly versatile across ecosystems aligned with all taxa (Elith et al., 2011). The
results of MaxEnt's analysis are a habitat suitability map that provides a relative likelihood of a species
occurring across the landscape, which can be visualized in relation to extant conditions or projected across
future climate scenarios (Anbarasi & Dharmarajan, 2018). Ecologists from varied taxa have successfully
developed and applied MaxEnt, including mammals (Yost et al. 2008), birds, amphibians and plants
(Loiselle et al., 2008). The interpretability of the algorithm and its user-friendly interface combined with
good predictive performance have propelled MaxEnt to prominence in ecological modelling (Palash &
Dhurvey, 2024). Nevertheless, researchers should rigorously evaluate input variables, background
sampling, and model evaluation statistics to substantiate the validation process (Merow et al., 2013).

This document has five main sections. After the introduction, the literature review summarizes prior
research on habitat suitability modeling that employed the MaxEnt algorithm, ecological impacts of climate
change, and known limitations of the existing modeling approaches. The methodology section explains the
data collection process, the concepts of the MaxEnt algorithm, and the climate scenarios and variables used.
The results section present model outputs, such as predicted changes in habitat suitability, performance
metrics, and significant environmental drivers. The discussion interprets, this findings within the context of
conservation planning, considers the potential wider application of the MaxEnt approach and provide
suggestions for how to improve validity of modeling. The conclusion summarizes the study's contributions to
the body of work on habitat suitability modeling, reiterates the importance of continued research and
monitoring in the context of climate change, and introduces potential avenues of discussion for further
research on habitat modeling.

Literature Review
Previous Research on Habitat Suitability Modeling Using MaxEnt

The MaxEnt algorithm has gained traction in both ecological and conservation research for habitat
suitability modeling, primarily due to its ability to manage presence-only data. Multiple instances have been
reported its accuracy, especially within data-limited studies. Phillips et al. (2006) made a clear case for the
attributes of MaxEnt, where it was shown that MaxEnt outshone other predictor algorithms in terms of
species distribution predictions with large geographical extents, better sensitivity, and specificity, when
only a few occurrence points were available to build models (Akash et al., 2022). In addition to providing
better predictions than more traditional presence-absence based models, its ability to utilize environmental
predictors along with the outputs being interpretable maps, made it a leading algorithm in global
conservation. Examples examining taxa show there is a vast array of potential applications. They applied
the model to investigate the potential distribution of invasive plant species in China and provided habitat
under current conditions and potential habitat under future scenarios. K (Kumar & Stohlgren, 2009)
conducted predictive modeling of Ailanthus altissima spread and discussed the importance of elevation and
temperature to the definition of the species’ niche. In a study of avian ecology, they noted that MaxEnt
could provide reliable predictions of birds’ distribution in the presence of spatially biased sampling (Al-
Zarkoshi & Razzaq, 2022). The apparent breadth and applicability of a wide variety of studies for a variety
of taxa and the overwhelming shipping and science of MaxEnt have made it a readily available resource in
the ecology modeling toolbox.

Research on Climate Change and Species Distributions

Due to the increasing effects of climate change, researchers are undertaking modeling of species distributions
under a variety of emission scenarios into the future. Climate related habitat change is a focus of many
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current conservation planning approaches. Most climate-related studies employ MaxEnt in combination with
climate projection datasets, e.g. IPCC Representative Concentration Pathways (RCPs), to model how climate
change may result in species habitat losses or shifts in range. For example, (Loera et al., 2017) investigated
the effects of climate change on alpine plant species in the Mexican mountains and projected an substantial
upward shift in elevation. Li et al. (2020) also used Maxent to study the impacts of climate change on the
medicinal plant Rheum palmatum in China. They also found significant habitat loss in high-emission
scenarios. Bellard et al. (2012) indicated that many endemic species are particularly at risk for extinction due
to their narrow tolerances to environmental variation - but these species could be identified through models
like MaxEnt. Additionally, (Dawson et al., 2011) point out the necessity of applying predictive models to
support proactive conservation efforts, given that species will not be able to migrate quickly enough.
Predictive models have also seen increased success studying invasive species and disease vectors with the
objective of predicting future ecological issues (Guisan et al., 2013).

Critiques and Limitations of the MaxEnt Algorithm as Habitat Suitability Models

All of these advantages aside, MaxEnt remains imperfect. One of the primary critiques of how MaxEnt is
used is that of sampling bias, and the assumption that the presence data we collect is representative of an
actual environmental niche of a species (Yackulic et al., 2013). If occurrence records are spatially clumped or
come from opportunistic non-systematic surveys, resulting models may be biased. (Boria et al., 2014) found
un-corrected sampling bias in MaxEnt analysis led to erroneous predictions, especially in heterogeneous
landscapes. Another critique is MaxEnt’s reliance upon correlative relationships rather than mechanistic
processes, which prevents the inclusion of biotic interactions, dispersal limitations, and evolutionary
adaptation (Dormann et al., 2012; Khudhur & Aziz, 2024). Moreover, MaxEnt's predictive capability is
wholly dependent on environmental variables, and models using most variables without appropriate
regularization often experience overfitting (Tamannaeifar & Behzadmoghaddam, 2016), which emphasizes
the importance of model tuning and variable selection in the modeling process. As previously stated, recent
research has emphasized the algorithm's limited ability to model future range shifts involving unknown
climate conditions, or in not-analogue conditions (Owens et al., 2013) where any extrapolation outside the
environmental space occupied in the training data could lead to no reliable outputs. These critiques stress the
importance of careful interpretation and model validation, and when possible, supplementing MaxEnt with
other modeling frameworks.

Methodology
Data Acquisition and Preparation for Habitat Suitability Modeling

Habitat suitability modeling commenced with the acquisition of georeferenced species occurrence data. This
data was sourced from biodiversity databases and filtered to ensure only correct and accurate data was included,
removing data that was duplicated or inconsistent. Each occurrence point was verified to ensure it matched a
real geographic point in the world. Environmental variables, related to the ecology of the species - temperature,
precipitation, elevation, and soil - were selected. A Pearson correlation test was used to reduce multicollinearity
among predictors. Only variables with 7<0.8 correlation coefficients were retained. The extent of the clipped
variables were re-sampled to a standard spatial resolution, and converted into ASCII raster files. The presence
data was randomly split into training (75%) and testing (25%) subsets and 10,000 background points were
created over the entire study region to provide pseudo-absences to compare against for the MaxEnt models.
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Figure 2. Workflow for environmental variable selection in habitat suitability modeling

The diagram (Figure 2) illustrates the systematic process for selecting environmental variables for
the MaxEnt habitat suitability modeling, which begins with an initial set of bioclimatic and topographic
variables from global climate databases. The raw variables are checked for missing values and standardized
into consistent units of measurement. For the next step, a Pearson correlation matrix will be used to screen
for multicollinearity; species distributions and habitat suitability modeling are sensitive to highly correlated
variables (i.e., often >0.8). From this step, pairs of highly correlated variables are identified, and again
based on both applied knowledge and domain knowledge, one variable is removed from each highly
correlated pair for statistical reliability as well as ecological relevance, thus screening out overfitted
variables and redundancy from this analysis step. Forest plots of non-collinear, ecologically meaningful
variables are then prepared as a list for input into the MaxEnt algorithm. Overall, this systematic process
ensures the modeling approach is completed with a balanced set of informative predictors, leading to
improved accuracy of predictions and interpretation of habitat suitability results that consider variation in
some climate change scenarios.

Description of the MaxEnt Algorithm and Parameters

The Maximum Entropy (MaxEnt) algorithm estimates a probability distribution for a species by maximizing
entropy subject to constraints determined by environmental variables at known occurrence points of that
species. Formally, MaxEnt solves for a probability distribution P(x) over the potential set of environmental
characteristics f;(x) such that:

Constraint Condition:
D P [ = V) (1)
X

where y1; is the empirical mean of feature f; across the occurrence records. Our goal is to have the

distribution that is closest to uniform (maximizing entropy) subject to our constraints:
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Entropy maximization:
H(P) = — z P(x) log P(x) @)
X

This gives us the optimal probability distribution:

MaxEnt solution:

1
PG = Zexp| D Af; () ®)
J

In this case, A; are the weights of the features estimated by the model, and Z is simply a

normalization constant such that the total probability equals 1. The output of MaxEnt was a logistic value
for each cell, representing the relative suitability for habitat. The regularization parameters were modified to
reduce overfitting, especially when using more complex feature types such as hinge or product.
Crossvaliation was utilized via k-fold methods, to cross test model robustness. Model performance was
evaluated by the Area Under the Curve (AUC) from Receiver Operating Characteristics (ROC), with values
greater than 0.8 considered as highly predictive performance.

Climate Change Scenarios and Variables Considered in Modeling

To project future habitat suitability, we obtained climate projection datasets from General Circulation
Models (GCMs) under Representative Concentration Pathways (RCPs). Two scenarios were included, RCP
4.5 (moderate emissions) and RCP 8.5 (high emissions), in 2050 and 2070. The same environmental
variables were selected from projected climate layers as in the current climate model. Each future climate
layer was entered into MaxEnt, and adequate occurrence data were included. Suitability maps were generated
for each scenario and compared with current predicted distributions to discern which areas were experiencing
habitat contraction, expansion, or shift. We used spatial overlays in GIS to visualize changes, and performed
grid-based subtraction analysis to quantify lost and gained habitat. Although this modeling framework
informs relative vulnerability of species(es) under projected climate variables, it provides tools for strategic
and evidenced based conservation planning and habitat management.

Results
Predicted changes in habitat suitability under different climate change scenarios

The MaxEnt model created clear maps showing where the species could live now and under different future
climates. Right now, the best areas for the species are found where temperatures are mild and rainfall stays
pretty steady; those areas line up neatly with where we already find the species. Looking ahead, the maps
show that the species will probably move around under both the RCP 4.5 and RCP 8.5 pathways. For RCP
4.5 in 2050, we expect the southern edge of its range to shrink a bit while it pushes up to cooler mountains
and farther north. By 2070, under RCP 8.5, the maps show a bigger drop in areas that will stay suitable,
with large, previously occupied patches turning unsuitable. In both pathways, the model also flags new
regions that could be the right climate for the species even though they’re empty now. These spots are
usually spread out and in hard-to-reach places, making it tricky for the species to move there on its own.
Overall, the maps point to a future where the species is pushed into smaller, broken-up patches, a trend that
gets much worse if we keep choosing high emission pathways.
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Figure 3. Habitat suitability changeover time (current vs. future scenarios)

This graph (Figure 3) shows the area of habitat suitability in relation to four habitat suitability
categories of High, Medium, Low, and Unsuitable for the current climate and the future climate. The model
suggests the current climate reflects a relatively uniform distribution across the four mapping categories
with a notable area (25,000 km?) classified as highly suitable. However, under RCP 4.5 for 2050, we see a
substantial decrease in the area of high-suitability habitats, with proportionate increases in low and
unsuitable habitat. This response is even more severe for the RCP 8.5 response in 2070, with highly suitable
habitats declining to 12,000 km? and unsuitable habitats expanding to 27,000 km?. These results suggest a
climate-mediated shift in suitable habitats, with future models projecting habitat loss and habitat
fragmentation, especially under high-emission scenarios. Overall, there is concern for the climate
vulnerability of the species being considered in this assessment, especially as climate change increases in
pace and intensity.

Model Performance and Accuracy Metrics

We checked how well the model could predict by looking at the Area Under the Receiver Operating
Characteristic Curve (AUC) and the True Skill Statistic (TSS). The AUC tells us how good the model is at
telling the difference between good and bad habitats; scores go from 0.5, which is like flipping a coin, up to
1.0, which means it gets it right every time.

AUC:

1
AUC = f TPR(FPR)dFPR 4)
0

where TPR is the true positive rate, FPR is the false positive rate.

The average AUC (across cross-validated folds) was 0.89, which indicates the model performed
excellently. This suggests that the model could distinguish reliably between areas of presence and
background (pseudo-absence). The TSS was also computed as a threshold-dependent measure of model
accuracy, accounting for omission and commission errors.



Natural and Engineering Sciences 278

TSS:
TSS = Sensitivity + Specificity —1 (5)
where Sensitivity = TP / (TP + FN), and Specificity = TN / (TN + FP).

The maximum TSS was 0.72, which provides further evidence of the model's reliability. The
confusion matrices showed low omission rates, in addition to the classification between suitable and
unsuitable habitats appeared balanced. The logistic output maps also indicated high conformity to known
ecological patterns, further supporting the credibility of the predictions.
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Figure 4. Model performance metrics (AUC and TSS)

This graph (Figure 4) compares the performance of each model across climate scenarios and with
two measurements, Area Under the Curve (AUC) and True Skill Statistic (TSS). The AUC score for the
current climate model was 0.89 and TSS was 0.72 indicating good predictive accuracy and that there was an
appropriate balance in classification between suitable and unsuitable habitats in the climatic predictors. The
RCP 4.5 model is a little less robust, given AUC = 0.86; TSS = 0.68, indicative of increased uncertainty in
future projections. The RCP 8.5 model for the year 2070 is even lower (AUC = 0.83; TSS = 0.63); potential
explanations for decreased model performance include more extreme environmental conditions predicted
for the future and also because of differences between current species data and variables describing the
future habitat. In summary, while all models show acceptable performance, and predictive certainty
decreases under more severe climate change scenarios.

Identification of Major Environmental Variables Affecting Habitat Suitability MaxEnt provides a
ranking of the environmental variables that are contributing to the model also using their permutation
importance. The environmental variable that contributed the most was ranked mean annual temperature,
followed by precipitation of the driest quarter and elevation. All of these variables were influential on
habitat suitability across present and future scenarios. Response curves showed that the species preferred
moderate temperature (12°C - 20°C), beyond which predicted habitat suitability decreased rapidly.
Similarly, very dry and very wet conditions reduced predicted suitability, indicating that the species is also
sensitive to hydrological stress. The jackknife tests of variable importance indicated that removing the
temperature-related variable across climate scenarios diminished model performance considerably, which
emphasizes the dominant role temperature related variables play in defining the species ecological niche.
Elevation emerged as a strong proxy for a complex suite of microclimatic conditions suggesting they may
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explain species shifts towards higher altitudes under futures scenarios. In summary, the model outputs
suggested that climate variables are the primary factors driving current and future habitat distributions,
particularly seasonal precipitation and temperature.
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Figure 5. Variable importance (permutation contribution)

This figure (Figure 5) shows the relative contribution of the environmental variables to the MaxEnt
model based on permutation importance. The results show that mean annual temperature was the most
important variable at 37.5% explained variation. Mean precipitation of the driest quarter was second at
26.2%, demonstrating some seasonal water stress sensitivity in species. Elevation was third, which also
showed a large spatial gradient in the species' distribution linked to the altitude. The remaining
environmental variables - temperature seasonality, annual mean precipitation, and soil type - ranked lower
in importance but were still relevant. Climate-related variables were the obvious most dominant variables
highlighting that abiotic conditions will generally have a direct influence upon species occurrence, and
importantly illustrates how shifting climate regimes can have significant impacts on habitat suitability.
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Figure 6. Response curve for mean annual temperature

This graph (Figure 6) presents the relationship between habitat suitability and mean annual
temperature with the effect of this variable isolated in a univariate response curve. Suitability increases
slowly with temperature (between 8 to 18°C), reaching its highest, predicted value (0.88 on the logistic
scale) at around 18°C and decreasing sharply afterwards, dropping below 0.4 at 24°C and being close to
0.18 at 26°C. This unimodal response suggests that the species prefers moderate climates at warm
temperatures and that the species is not likely to persist in hotter climates. The response curve shows that
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the species has a small temperature tolerance. This inability to tolerate higher temperatures may help
explain the projected range contraction under future warming patterns - suggesting that the relationship to
temperature is an important driver of the species ecological niche.

Discussion
Conservation and Management Implications of the Results

Greater shifts in habitat suitability were revealed in addition to significant reductions in the most suitable
habitats and large increases in the most unsuitable habitats under the climate change scenarios used in this
modeling study. These changes have important implications for biodiversity conservation and habitat
management because it suggests the need to change current conservation practices. While today's protected
areas may work, they may become ineffective if the environmental conditions exceed the tolerances of
species in the future. As such, a more dynamic form of conservation planning, factoring in climate
projections for spatial prioritization, is needed. Perhaps more importantly, the identification of possible
future refugia, at higher altitudes or latitudes, can facilitate their strategic expansion or reconfiguration into a
conservation opportunity. These refugia could act as buffers against future climate change, offering suitable
microclimates as the surrounding areas become unsuitable. It will also be important to have linkage corridors
in place to connect existing and new suitable areas. This will allow animals to migrate as climate envelopes
shift. With species that have restricted dispersal ability, actively managed adaptive responses, such as
assisted migration or ex-situ approaches, may need to be considered. In a policy context, this work
emphasizes the potential value of incorporating predictive ecological modelling into national and regional
biodiversity strategies. As climate change continues to accelerate, static conservation approaches will
increasingly fail us, making the forward-thinking tools like MaxEnt essential for long-term planning.

Potential Applications of the MaxEnt Algorithm in Other Ecological Studies

Although this study focused on predicting habitat suitability for a single species, the MaxEnt algorithm is
amenable to many different ecological contexts. The algorithm may be used to assess invasive species
distribution potential, forecast the types of areas potentially impacted by disease vectors, or evaluate the
impact of land-use changes on sensitive habitats (Li et al., 2020). It's potential lies in its ability to develop
reasonable predictions based on presence-only data, and is especially useful in geographical areas with limited
survey effort or with studies of sensitive and/or difficult to observe species. In the realm of ecosystem
management, MaxEnt can play a role in prioritizing restoration sites by identifying locations that are
climatically and ecologically suitable for native vegetation or keystone species. Its potential can also be
realized in environmental impact assessments by predicting the potential loss of ecological function in
multiple development scenarios. In climate resilience planning, because MaxEnt can model future habitat
shifts, it could provide scenario-based planning support, something to consider especially as adaptive natural
resource governance calls for these in an increasingly complex landscape. MaxEnt outputs combined with
other spatial datasets—whether it be landcover, human footprint indices, or ecosystem services—can provide
more comprehensive applications for understanding landscape dynamics and undertake multi-objectives in
planning (e.g., biodiversity conservation vs socioeconomic development).

Suggestions for Future Research and Refinements to Modeling Approaches

While MaxEnt has been a powerful predictor in the recent past, nuances in model accuracy and ecologically
relevant modeling strategies still must be refined. Future research should include species specific ecological
characteristics, such as dispersal abilities, reproductive strategies, and biotic interactions which are currently
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downplayed in correlational models. Future research could also improve on MaxEnt's ability to model
underlying complexity of responses to higher nature of environmental change, through incorporation of
mechanistic modeling claims. Improvement of data quality is another fully realized need. Further expansion
of public species occurrence records, via citizen science, remote sensing, and structured field data collections
would reduce sampling biases that further perpetuate incautious modeling. Expanded datasets and then fine
filtered environmental data at finer resolutions for soil moisture, land use and microclimate conditions, can
yield statements with greater locational precision. Further still, outputs from models of ecological changes
and ecological responses must be validated against independent datasets when possible, and even actual field
verification, where possible. An added means of increased certainty from MaxEnt predictions is to cross-
validate with the own work of other modeling algorithms, or utilize an ensemble modeling approach. All
these approaches can amplify our confidence in predictions, as long as predictions are sustainable enough, in
terms of real-world conservation.

Conclusion

The present study demonstrated that the MaxEnt algorithm is an effective method for predicting habitat
suitability for conservation purposes, under both current and future climate change scenarios. The
model portrayed major shifts in species distribution patterns, with a reduction to high-suitability areas
and an increase to unsuitable areas, notably in the case of more extreme projected high-emission
projections. These findings highlighted the immediacy needed to incorporate climate change
considerations into conservation planning and landscape management. By identifying possible future
refugia and highlighting or showcasing some of the major influencing environmental drivers—such as
temperature and seasonal precipitation—this science-based approach can provide a reliable framework
for adaptive strategies to promote biodiversity conservation. Major performance metrics support
MaxEnt’s overall reliability in ecological forecasting, even when samples are limited to presences only.
As climate and ecosystems are inherently dynamic, ongoing improvements can be made to modeling by
integrating data better, allowing species' ecological traits to inform spatial and temporal applications,
and developing field-based validation methods. In the future, MaxEnt should be applied more broadly
across taxa and regional contexts to build predictive ecological networks that inform conservation
priorities at local and global scales. With global environmental change progressing at an unprecedented
rate, ongoing research, monitoring, collaboration, and action will be critical to the resilience and
persistence of species and ecosystems in landscapes experiencing rapid transformation.
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