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Abstract 

The rapid adoption of Internet of Things (IoT) development has created the possibilities of smart 

environments that can maintain constant monitoring and smart control of the vital resources. Nevertheless, 

traditional rule based and fixed optimization methods tend to be rigid to dynamic and heterogeneous 

environments in the real world and result into inefficient use of resources and higher energy use. To offer 

solutions to these issues, the paper is proposing the implementation of an intelligent IoT-enabled smart 

environment framework to bring neural computing in conjunction with a Genetic Algorithm (GA)-based 

optimization plan to sustainable resource management. Under the suggested model, the IoT sensors would 

receive real-time data about the environment in which they are installed and the way they are used, which 
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are then processed by a neural computing unit to forecast resource demand trends. A GA in turn uses these 

predictions to make adaptive optimization of the allocation of resources under a variety of sustainability 

and operating constraints. The fitness function used by the GA reflects a combination of energy efficiency, 

usage of resources, and comfort to the user and it allows making strong decisions in dynamic environments. 

The experimental testing done on a simulated smart environment shows that the suggested framework will 

considerably decrease the consumption of the resources and enhance the general sustainability of the 

process as compared to the traditional non-optimised and heuristically-driven techniques. The findings 

confirm the usefulness of the evolutionary optimization strategy along with the use of neural intelligence 

that structured the adaptive, energy-efficient IoT-based smart environments, and they demonstrate that the 

framework can be implemented in the next-generation sustainable architecture of infrastructure systems. 
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Introduction 

Smart environments have become one of the main prerequisites of meeting the sustainability targets in the 

contemporary city and infrastructural framework due to increased pressure on efficient use of energy, 

minimum waste utilisation, and better living standards. The accelerated urbanisation and climate change 

factors have enhanced the necessity of smart systems which are capable of handling resources including, 

energy, water and services pertaining to the environment in an efficient and adaptive mode. Smart cities, 

buildings and ecosystems take advantage of the developed sensing, communications and control technologies 

to survey the environmental conditions and human behaviour in real-time, hence making smart decisions on 

how to operate sustainably (Batool et al., 2021; Fong et al., 2017; Mohanty et al., 2016). Nevertheless, the 

growing sophistication and flux of these environments is a great challenge to traditional management 

strategies. 

Internet of Things (IoT) is a significant aspect in the achievability of smart environment as it offers 

real-time and continuous data capture over a heterogeneous network of sensors and mobile devices. IoT-based 

designs can facilitate an easy combination of environmental sensors, smart metres, wearable and smart 

appliances to facilitate real-time monitoring and control (Mohanty et al., 2016; Sindhu, 2024; Sung et al., 

2019). Such data streams are used to support modern analytics in applications e.g., energy, HVAC control, 

traffic, and irrigation control (Mistry, 2022; Abi Saab et al., 2019; Saleem et al., 2022). In spite of these 

improvements, the successful use of IoT data in intelligent decision-making is still a challenge because the 

volume, variability and uncertainty of the environment are incomprehensible in reality. 

The conventional methods of managing resources in smart environments include rule-based 

approaches to control or statical optimization methods that are not scalable or open to changes. These 

approaches do not usually react well to dynamic variations in the environmental conditions, user behaviour 

and availability of resources, leading to inefficient performance and unnecessary wastage of resources 

(Papazoglou & Biskas, 2023; Veerappan, 2025). Although heuristic and mathematical optimization methods 

have been discussed, they are not always successful in dealing with nonlinearity, multi-objective limitation, 

and real-time flexibility. Recent works have also suggested the promise of evolutionary and swarm-based 

optimization methods on energy and resource management, but there are numerous existing methods that do 

not either include learning-based models or specifically lack predictive intelligence; furthermore, most 
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existing methods do not include learning-based models of proactive control (Ibrahim et al., 2024; Meng & 

Li, 2024). 

In a bid to overcome these shortcomings, in this paper, a smart environment framework grounded on 

IoT is suggested that will merge neural computing with Genetic Algorithm (GA) on optimization of resources 

to be sustainable. In the suggested system, neural computing models will be used to predict patterns of 

resource demand based on real-time data of IoT sensor data, and the GA will be used to conduct adaptive 

costing of resources allocation due to sustainability and operating constraints. The key findings here are: (i) 

a single architecture, based on the IoT and driven by smart environments, is designed, (ii) the incorporation 

of the GA to drive the optimization of efficient and adaptive resources, (iii) the inclusion of the neural 

computing to predict demand and make intelligent control decisions, and (iv) the performance evaluation 

aims at sustainability, efficiency and effectiveness of optimization. The suggested strategy shows how 

integrating evolutionary optimization and neural intelligence would facilitate the provision of next-generation 

sustainable smart environments. 

Related Work 

The recent years have observed the intensive research aimed at creating the IoT-enabled smart environment 

and smart city schemes to enhance the sustainability, efficiency, and quality of life. It has been highly known 

that IoT forms the foundation of smart environments, a place through which mass sensing, communications, 

and real-time data collection takes place across all areas of application (Mohanty et al., 2016). Other researches 

have suggested IoT-based platforms of smart homes, buildings, and cities, with the emphasis on automation 

and centralised control through cloud computing platforms and mobile applications (Mistry, 2022; Sindhu, 

2024). Also, smart traffic regulation, smart irrigation, and environmental observation have shown that IoT can 

be used in the control of the complex urban infrastructure (Abi Saab et al., 2019; Saleem et al., 2022). The 

general characteristics and typical IoT-based smart environment frameworks are summarised comparatively 

in (Table 1). 

The response to resource management within the IoT-enabled set up has been checked fully especially 

in the towards energy efficiency, load balancing, and consumption modelling. Predicting energy consumption 

and tuning operations of smart buildings and low-energy systems have been done using machine learning and 

data-driven techniques (Veerappan, 2025; Kumar, 2025). Other works are on appliance-level modelling and 

usage-profiling to aid demand-side management, whereas others are on decision-support systems to make 

real-time control (Poornimadarshini, 2025). Irrespective of these developments, most of the current resource 

management solutions are based on fixed policies or thresholds and this restricts their ability to adapt to the 

dynamic environmental environments and user activity (Papazoglou & Biskas, 2023; Fu & Zhang, 2025). 

This leads to a real concern of having smart and responsive optimization system able to accommodate real 

time dynamism in the IoT systems (Lim & Lee, 2025). 

Genetic Algorithms (GAs) and evolutionary optimization methods have extensively been used on 

complex optimization problems of energy and resource management since they embrace the ability to address 

nonlinear, multi-objective, and limited search space (Mukti, 2025). It has been demonstrated that GAs can be 

used to solve optimal power flow and energy management problems more efficiently than traditional 

optimization and heuristic techniques do (Papazoglou & Biskas, 2023). Other recent studies have also 

considered methods to optimise the convergence and quality of solutions of hybrid optimization methods, 

such as the particle swarm optimization (PSO) and fuzzy-based methods that are based on evolutionary 

methods (Ibrahim et al., 2024; Meng & Li, 2024). Nevertheless, a number of these strategies are centred on 
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maximisation rather than forecasting intelligence thus limiting their capacity of responding proactively to 

future demand trends to smart environments. 

Table 1. Summary of related work on iot-based smart environments and optimization techniques 

Ref. 
Application 

Domain 
Technique Used Key Contribution Limitation 

Mohanty et al., 

2016 
Smart cities 

IoT-based sensing and 

communication 

Established IoT as the 

backbone of smart city 

infrastructure 

Lacks intelligent 

optimization 

mechanisms 

Batool et al., 

2021 

Smart 

ecosystems 

Artificial Neural 

Networks (ANN) 

Intelligent modeling of 

environmental systems 

No optimization-

driven resource 

allocation 

Papazoglou & 

Biskas, 2023 

Energy 

systems 

Genetic Algorithm 

(GA), PSO 

Comparative analysis of 

evolutionary optimization 

methods 

Focused on power 

flow only 

Veerappan, 

2025 

Smart 

buildings 

Machine learning-

based prediction 

Accurate energy 

consumption forecasting 
Static control policies 

Ibrahim et al., 

2024 

Energy 

management 

Fuzzy logic–PSO 

optimization 

Integrated storage-aware 

energy management 

Limited neural 

prediction integration 
 

Techniques of neural computing and artificial neural networks (ANN) and deep learning models have 

been proven to be very strong in modelling the environment, pattern recognition and predicting demand in 

smart ecosystems (Batool et al., 2021; Veerappan, 2025; Punam, 2025; Maria et al., 2025). These models 

allow historical and real-time IoT data to be used to learn about energy consumption, environment, and 

behaviour of the system. However, the current researches tend to separate prediction and optimization and 

provide with fragmented solutions. Based on the overview of (Table 1), it can be observed that there is a 

cavernous gap in the literature regarding a seamless operation between the GA-based optimization and neural 

computing in the context of IoT-based sustainability. More to the point, there is a scarcity of adaptive multi-

objective optimization methods that would aim at achieving efficiency, sustainability and user comfort in a 

unified manner, which drives the proposed unified GA -neural computing framework in this paper. 

System Overview and Problem Formulation 

The proposed smart environment architecture of the IoT is aimed at fostering uninterrupted sensing, smart 

decision-making and dynamic control of the resource management to handle resources sustainably. The 

architecture is layered (as shown by (Figure 1)) in that it enables scalability and modularity and provides 

seamless interaction among the sensing, computation and actuation units. This stratified solution helps to 

efficiently collect and distribute data between heterogeneous IoT assets and intelligent optimization units and 

enable bidirectional control mechanisms to engage in real-time and context-specific resource management of 

smart spaces. The lowest in the line, the system takes into consideration a heterogeneous layer of sensors 

including environmental sensors, smart energy metres, water flow sensors, occupancy detectors, and smart 

appliances (Villanueva et al., 2022). These sensors keep tracking the physical conditions of temperature, 

humidity, energy use, water use, human presence and provide real time streams of data that indicate the 

dynamic condition of the environment. Data gathered is relayed via the communication layer that comprises 

of IoT gateways and edge/cloud connectivity that are reliable. This layer guarantees secured and low-latency 

data transmission and pre-processes at the edge to both lessen communication overheads and make timely 

decisions. 
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The intelligence layer and data processing component is the main part of the suggested architecture 

and is a combination of neural computing and Genetic Algorithm optimization. Neural computing models are 

used to analyse real-time sensor data and historical sensor data to predict the demand pattern of resources and 

environmental dynamics. The GA makes use of these predictions to do adaptive optimization of the resource 

allocation considering various objectives and constraints. The intelligence level tests solutions that have been 

applied to it based on sustainability-oriented fitness functions and it constantly improves control strategies 

based on the feedback provided by the environment and in the process proactive and adaptive system 

behaviour is displayed in (Figure 1). It is on this basis that the resource management problem is defined as a 

constrained optimization problem with various interdependent resources such as energy, water, HVAC 

systems and lighting. The major targets are to reduce the total amount of energy consumption, lessen the 

wastage of the resources, and enhance system sustainability and efficiency during its operations, without 

compromising the comfort of the user and quality of services. Resource refinements and limitations: The 

capacity limits of a resource, the comfort levels, the operational safety demands and the real-time 

responsiveness are a few of the system constraints. The framework introduces resource management as a 

multi-objective optimization problem in the proposed IoT-driven architecture, which allows implementing 

intelligent, adaptive, and sustainable management of smart environments. 

 

Figure 1. Layered architecture of the proposed iot-driven smart environment for intelligent and 

sustainable resource management 
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Proposed Intelligent Framework 

It is suggested that the intelligent approach to managing resources in smart environments combines IoT 

sensing, neural computing, and optimization with the use of Genetic Algorithm to provide adaptive and 

sustainable resource management. The framework presented in (Figure 2) is a closed-loop operational cycle, 

which has an initial step of data acquisition by distributed sensors of IoT and the final step of intelligent 

actuation and feedback. Raw sensor data, the first step in processing, is conducted to eliminate noise, deal with 

values that have been removed and to standardise heterogeneous inputs. Predictive intelligence and decision-

making based on optimization of the system relies on this processed data stream. The main element in the 

framework is the neural computing module, which predicts future demand of resources and environment 

adjustments basing on real-time and historical data of the IoT. It uses an artificial neural network (ANN) or a 

long short-term memory (LSTM) model, depending on the application case, to help formulate nonlinear 

relations and time dependencies of sensor data. The input features consist of environmental parameters, energy 

use and water use measures, occupancy measures, and time measures. The neural model produces the predicted 

demand levels or environmental conditions which are continuously updated using the historical data in order 

to hone to the correct and sturdy predictions in the dynamic working conditions (Vijayan, 2022). 

 

Figure 2. Block diagram of the proposed genetic algorithm–neural computing framework for intelligent 

iot-based resource optimization 

The generated demand forecast data of the neural computing module is then used by the Genetic 

Algorithm (GA) based optimization engine to calculate the best resource allocation schemes. Under the GA 

formulation, resources allocation decision is encoded in each chromosome as a candidate solution amongst 

numerous controllable components. The fitness mandate is aimed at considering the combination of energy 

efficiency, sustainability indices like minimised resource wastage and emissions, and comfort limitations to 

the users. The standard GA processes, such as selection, crossover and mutation, are used repeatedly to 

develop the population into optimum solutions, which allow search space to explore complex and constrained 

space economically. This optimization is repeated until convergence or termination conditions have been met, 
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e.g. a maximum number of generations has been reached or the value of the fitness has changed 

insignificantly. After the identification of an optimal solution, the respective control measures are 

implemented using the actuation layer to govern the use of energy, HVAC operation, lighting intensity among 

other resources that are being controlled. These actions can be constantly assessed through a feedback loop 

to take action through IoT sensors so that the framework can adjust to the evolving environmental conditions 

and user behaviour. Such closed-loop intelligence as illustrated in (Figure 2) generates real time flexibility, 

enhanced sustainability, and resilient performance of the put forward internet of things based smart 

environment architecture. 

Algorithm Design and Workflow 

The suggested algorithm has a closed-loop optimization cycle in which IoT sensor data are constantly being 

gathered, pre-processed and converted into valuable features that outline the present working condition of the 

intelligent environment. These characteristics are passed on to the neural computation unit (ANN/LSTM) that 

forecasts short-term resource requirements (e.g. predicted energy load, water consumption, and hvac demand 

due to occupants). The forecasted demand is considered a predictive approach that does not entail any reactive 

control but allows making proactive decisions. This is then the prediction output that is inputted into the 

Genetic Algorithm (GA) engine to inform the setting of resources and scheduling in a manner that is 

knowledgeable of sustainability-focused goals. 

Optimal allocation of resources based on GA starts by coding a candidate plan of allocation of 

resources, which is encoded in the form of a chromosome. The chromosomes are possible control settings of 

the resources that are under control, i.e. HVAC set points, lighting intensity levels, energy distribution 

priorities, water allocation schedules, and appliance operating times. The starting population of chromosomes 

may be created randomly, or as a heuristically selected population to provide faster convergence. A fitness 

score is calculated with a multi-objective formulation of energy efficiency, resource wastage reduction, 

sustainability (e.g. penalty on excessive consumption) and user comfort constraints, depending on a 

chromosome. Notably, neural forecasts are already incorporated into the fitness calculation in such a way that 

candidate solutions can be evaluated on their ability to fit future demand conditions and not only on latest 

sensor measurements. 

Once the computation of fitness is finished, the GA goes through an iterative process of evolutionary 

optimisation based on the conventional genetic operations. The powerful chromosomes are selected to 

reproduce with the application of tournament selection or roulette-wheel selection; better solutions have more 

likelihood of spreading through selection. Crossover is then used to swamp genes between sets of parent 

chromosomes creating offspring with mixed control decisions allowing exploration of a variety of allocation 

strategies. Mutation adds controlled randomness through the manipulation of a small fraction of the genes; 

which prevents a premature convergence, and improves resiliency in dynamic IoT. Each generation, capacity 

limits and comfort boundaries are imposed in the fitness function by repair functions or penalty terms to make 

sure that the functions developed during evolution are practical (Vijay et al., 2022). 

A workflow is stopped when a convergence or stopping criteria is met, e.g. when the number of 

generations is greater; when the best-fitness of the solution does not change significantly over a series of 

iterations; or when the sustainability of the solution reaches a predefined sustainability threshold. The fittest 

chromosome is subsequently chosen as the most optimal solution and its decoded parameters are converted 

to control commands that are actuated by the actuation layer (HVAC controllers, lighting systems, energy 

management units and water control devices). The last step is the validation of the effect of the implemented 

actions with the assistance of real-time feedback provided by IoT sensors and updating the dataset used to 
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enable further prediction and optimization processes. Such a cyclic process empowers the adaptive and 

optimization-based regulation that enhances sustainability performance without deteriorating the operational 

stability and comfort ability of users in intelligent environments. 

Experimental Setup 

The proposed framework test is performed with the help of an experimental simulation of an IoT-based smart 

environment which models a typical multi-zone smart building environment. The environment is made up of 

interrelated spaces in the form of offices, residential houses and shared utility facilities creating a managed 

smart zone with mixed resource requirements. This test system allows evaluating energy management, water 

management, HVAC, and lighting management under different occupancy and in different environmental 

conditions. Virtual IoT sensors used on a network perform this to track variables such as temperature, humidity, 

energy use, water flow, the presence of occupants and time-of-use profiles and gives realistic and 

heterogeneous data streams that evoke real-life operating conditions. 

The simulated IoT environment is designed and organised to facilitate data collection and 

communication in a similar way that it employs a gateway-based architecture with edge-to-cloud 

connectivity. Sampling of sensor data is done and fed to the processing layer where preprocessing methods 

like normalization, use of noise filters and feature extraction methods are performed. The simulation enables 

user behaviour and environmental conditions to be varied under controlled conditions and thus assess the 

robustness of the system. There are also historical sensor data to train the neural computing module and test 

the demand prediction performance in various scenario operation conditions. 

The implemented engine is based on generalised scientific computing and machine learning 

platforms. The neural computing unit is implemented as an artificial neural network of feed forward or LSTM 

based on the time complexity of input data and is trained in supervised mode by use of historical sensor data. 

Genetic Algorithm works on a population-based evolutionary scheme and the parameters are configured 

based on the following parameters, population size, mutation rate, crossover probability as well as number of 

generations. The parameters used in the experiment regarding the selected GA and neural network 

configuration are presented in (Table 2), transparency and reproducibility of the implementation will be 

ensured. 

The different quantitative measures applied to assess system performance are efficiency, 

sustainability, and computational feasibility. The energy consumption is determined as the sum total of the 

energy consumed by the managed resources during the simulation time period, whereas the efficiency of 

resource utilisation indicates the proportion between resource used effectively and the capacity. A 

sustainability index is determined to measure resource conservation and waste reduction as compared to base-

line strategies. Also, additional evaluation is made on computational overhead based on the algorithm 

execution time, processing load, such that the proposed framework can be implemented in real-time or near-

real-time in an environment based on the IoT. 

Table 2. Experimental parameters and GA configuration 

Parameter Description Value 

Simulation environment Smart building with multi-zone setup Offices, residential units, utility areas 

IoT sensor sampling interval Data acquisition rate from sensors 5 seconds 

GA population size Number of candidate solutions per generation 50 

GA mutation rate Probability of gene mutation 0.05 

Number of GA generations Maximum optimization iterations 100 
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Results, Performance Evaluation, and Discussion 

The performance of the proposed GA-neural computing structure is optimised with respect to the analyses of 

the convergence behaviour of the Genetic Algorithm, and the efficiency of the resource allocation. The GA 

provides convergence which is steady and stable over repeated simulation runs, converging to close-optimal 

fitness values within very few numbers of generation. This action suggests the exploration and exploitation of 

the solution space with the assistance of integrating neural demand predictions into the fitness assessment. The 

convergence curve as shown in (Figure 2) demonstrates that in the initial generations, loss is reducing very 

rapidly and thereafter the loss reduces gradually, which explains why GA is suitable in complex multicurve 

resource management problems in dynamic IoT-driven environments. The benefits of sustainability and 

efficiency that the proposed framework will produce are evaluated by conducting a comparative analysis of 

the methods that follow the baseline methods, such as rule-based control and static optimization. The findings 

pin a substantial decrease in total energy usage and wastefulness of resources in case one uses the GA-based 

framework. The system is more efficient in charges of utilisation by proactively allocating resources that are 

based on predicted demand versus reactive thresholds, and also, energy, water, HVAC, and lighting subsystems 

achieved greater utilisation efficiency. The existence of quantitative improvements in performance such as 

those captured in (Table 3) indicates significant advancement of the sustainability metrics hence the efficiency 

of evolutionary optimization as a solution to the challenges that are witnessed in the existing non-evolutionary 

oriented smart environment control strategies, specifically resource inefficiencies (Muralidharan, 2024). 

An in-depth comparative scheme also reflects the benefits that the proposed GA-based framework 

had compared to the traditional optimization methods. The traditional approaches are normally based on 

predetermined parameters or simplified models hence are not able to respond to time-dependent changes in 

environmental conditions and human behaviour. Compared to it, the GA-based method adaptively reacts to 

changes in control choices by an iterative evolution process, making nonlinear constraint and competing goal 

management opportunities superior. In addition, the integration of neural computing is also associated with 

high performance of the GA that facilitates the optimization process to solutions that will be operational with 

future conditions with the operating environment as illustrated by the refined improvement trends indicated 

by (Figure 3). 

In a bigger scale, the findings justify the advantages of GA-based intelligent optimization of scalable 

and adaptive smart environments. This framework proves highly adaptive to changing environments and 

resource requirements, which makes it applicable to implementation in massive smart buildings, campuses, 

or urban areas. The scalability is supported by the modular architecture and closed loop feedback mechanism 

that would not incur too much over head on the computational part as attested by the efficiency metrics in 

(Table 3). In practise, the findings indicate that the ability to combine evolutionary optimization with neural 

prediction can contribute greatly to sustainability, efficiency of operation, and intelligence of the decision 

making of the next generation of the IoT-enabled smart environment. 

Table 3. Key performance gains and trade-offs 

Metric Baseline Method 
Proposed GA–Neural 

Framework 
Improvement / Trade-Off 

Energy consumption High Reduced Significant energy savings 

Resource utilization efficiency Moderate High Improved allocation accuracy 

Sustainability index Low–moderate High Reduced resource wastage 

User comfort compliance Fixed thresholds Adaptive control Better comfort preservation 

Computational overhead Low Moderate Acceptable for real-time use 
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Figure 3. Comparison of resource consumption between baseline method and proposed ga–neural framework 

Limitations and Future Research Directions 

Although the suggested IoT-based GA comes with a neural computing framework has proven to be promising 

in its outcomes, there are some restrictions that have to be considered. The assessment is performed in the 

context of simulated smart environment to represent a multi-zone smart building, and, although the 

environment is realistic, it fails to reflect the volume and dimension of large smart city infrastructures. With 

an increase in the number of IoT devices, the resources under its control, and the stakeholders, difficulty in 

communication latency, the heterogeneity and the coordination of the various components may emerge. A 

strategy to deal with the issue of scalability is then crucial in extrapolating the proposed framework to the city 

scale implementations. 

The other weakness of the current work is the application of single-objective or aggregate fitness 

formulation in the Genetic Algorithm. Despite the fact that the fitness function is characterised by the 

combination of various factors like energy efficiency, sustainability and user comfort, the above objectives 

are implemented as one optimization criterion. It may be enhanced in future research by using more 

sophisticated variants of GA like NSGA-II or MOEA-based methods as a means to explicitly represent the 

trade-offs between competing objectives and produce Pareto-optimal answers. It would allow more flexible 

and transparent decisions in the situation when priorities differ among applications or among users. The 

existing framework is also based on neural prediction and GA-based optimization, which is on a centralised 

or semi-centralised processing. Although such a design eases implementation and assessment, it can make it 

less responsive in very dynamic systems or ones with other significant latencies. Future extensions may 

support real-time edge-AI controllers that will do localised prediction and optimization to the sources of data. 

This intelligence enabled on the edge would minimise overheads on communication, ensure real-time 

adaptability, and resilience to network disruption during large-scale inputs on IoT adoptions. 

Lastly, the suggested framework is mostly confirmed by the means of simulation experiments. Even 

though the evaluation conditions offered by simulation are controlled and repeatable, real-world test beds in 

the IoT bring practical considerations to simulation: sensor noise effects, device malf, losses in 

communication and unexplained user behaviour. The next step in the future will be to apply the framework 

to actual IoT test bed and pilot installations of smart environments to test robustness, sustainability 
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performance and reliability. These practical applications will be essential in the role of transforming the 

proposed solution into an actual model in moving past a research prototype version to a viable solution on 

intelligent and sustainable smart environment on the next generation. 

Conclusion 

This paper illustrated a smart environment system based on intelligent IoT-controlled frameworks to optimise 

the adaptive management of resources through neural computing and Genetic Algorithms. Through proactive 

and control-informed utilisation of real-time, IoT sensor and neural demand prediction, the offered framework 

is successfully used to control the energy, water, HVAC, and light resources in the dynamic environment. The 

optimization based on GA showed good convergence characteristics, as well as, large amounts of enhancement 

in the efficiency of resource utilization and sustainability relative to the traditional rule-based and non-dynamic 

optimization strategies (Kozlova & Smirnov, 2025; Prasath, 2025). The framework by itself was demonstrated, 

with the help of extensive experimental assessment, to have less resource consumption and user comfort at 

reasonable computational overhead. On the whole, this paper offers a scalable and intelligent framework of 

sustainable smart environmental management and emphasises the applicability of evolutionary optimization 

and neural intelligence to the next generation IoT-based systems, which target energy efficiency, scalability 

and long-term sustainability. 
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