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Abstract 

The recent accelerated growth of Internet of Things (IoT) implementations in smart environments has 

amplified the situation regarding the energy efficiency and computational scalability coupled with dynamic 

resource management in heterogeneous and timevarying conditions. Old-fashioned centralised and non-

adaptive based optimization mechanisms are growing to be ineffective mainly because they are very rigid, 

and they consume a lot of overhead. In order to overcome these limitations, the given paper will introduce 

an AI-assisted hybrid optimization strategy which incorporates the principles of neural computing with 

those of genetic algorithm (GA)-run evolutionary optimization to facilitate resource-optimal and intelligent 
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performance of IoT-driven smart surroundings. Under the suggested methodology, lightweight neural 

computing frameworks implemented at the edge tier offer real-time local awareness and forecast estimation 

of the workload, energy requirements and network states of affair. A multi-objective GA then uses these 

predictions to produce dynamic optimization of the critical system parameters such as task scheduling, duty 

cycling, transmission power and edge-cloud offloading decisions. Closed-loop feedback allows the hybrid 

neural to act proactively and to implement global optimization and dynamically adapt itself through a hybrid 

neural structure. Comprehensive simulations of the framework on the basis of different node densities and 

traffic conditions prove that the proposed framework outperforms the traditional heuristic, neural-only, and 

GA-only strategies through optimization significantly. Experiments have shown significant energy savings 

and latency at the end, and significant increases in network lifetime and Quality of service (QoS) 

sustainability. The solution proposed is scalable, computationally efficient and is well adapted to the 

deployment in next-generation smart cities, smart buildings and industrial IoT systems that need smart, 

autonomous and resource-aware operation. 
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Introduction 

The fast evolution of Internet of things (IoT) technologies has allowed creating such intelligent smart 

environments as the smart home, smart cities, smart agriculture, and industrial automation systems. These 

environments are based on the mass implementation of heterogeneous IoT equipment with sensing, 

communication and the limited processing of information to help monitor it in real time and make autonomous 

decisions. Even though smart environments built on IoT enhance efficiency and ensure the comfort of the 

users, numerous challenges exist pertaining to energy consumption, bandwidth usage, and scalability in 

computation with limited embedded devices and dynamism of any operating environment. 

The traditional methods of resource management and optimization used in the IoT systems are 

effectively based on the traditional heuristic or centralised control systems. These do not work well in dynamic 

and large-scale environments, where they cannot be changed on the fly and have a lot of overhead and latency 

in terms of communication. Besides, centralization represents a limitation of scalability and single-point 

failures of centralised optimization, as it would not suit the next-generation smart environments with varying 

workloads, mobility, and heterogeneous resources requirements. 

The latest developments of Artificial Intelligence (AI) have shown a good potential of the idea of 

intelligent management of resources within an IoT environment. The models of neural computing allow the 

data-driven learning, detecting the situation and making decisions in advance, and evolutionary algorithms like 

Genetic Algorithms (GAs) offer robust optimization of a global scope. Nevertheless, neural models can achieve 

local optimum solutions in the presence of a complex system dynamics, but in general, GA-based methods can 

consume large amounts of computation and are not capable of adapting to real-time conditions when used 

separately. 

To address these issues, this paper will introduce an AI-based hybrid model that unifies the neural 

computing to adaptive context-aware intelligence with GA-based multi-objective optimization to optimally 

use resources. The suggested system facilitates real-time education, automatic adjustment, and worldwide 

optimization among the heterogeneous IoT nodes. The key contributions of this paper are as follows: (i) a new 
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hybrid Neural-GA architecture based on the resources-efficient design of smart environments is proposed, (ii) 

the creation of smart context-aware decision-making based on the lightweight neural models is presented, (iii) 

a multi-objective strategy based on the GA optimization aimed to reduce energy consumption, latency, and 

throughput is formulated, and (iv) a complete evaluation of the results is presented that proves the superiority 

of the proposed approach to conventional and standalone AI-based solutions. 

Related Work  

The optimization of IoT-enabled smart environments by using AI has emerged as one of the key areas of interest 

on how to maximise efficiency, scalability, and autonomy. Nonlinear LLD Learning-based optimization 

strategies have become the focus of attention since they are capable of modelling the dynamics in a nonlinear 

system and adjusting to varying workloads. The issues of regioselectivity The study by Li et al., 2021 lists 

intelligent optimization algorithms based on learning and points out that when their system states are uncertain 

and multidimensional, data-driven optimizers could be better than their classical counterparts, but still 

encounter a challenge in robustness, interpretability, and deployment overhead in constrained systems (Li et 

al., 2021). At the same time, uncertainty-based optimization has been widely examined in multi-faceted cyber-

physical infrastructures, with requirement in uncertainty-sensitive formulations and stochastic/robust 

methodology. The review of optimization techniques in the uncertainty context by (Roald et al., 2023) revealed 

that scalable decision-making mandates a compromise in model accuracy and computational tractability 

particularly in renewable variability and operational limitations (Rahman, 2025). On the same note, (Zhao & 

You, 2022; Punam, 2025; Reginald, 2025) aimed to introduce machine learning-aided robust optimization in 

managing disjunctive uncertainties and they found that a combination of predictive learning and optimization 

can increase the resilience of operations (Ramya, 2025; Rahim, 2025; Poornimadarshini, 2025). 

The uncertainty and constraint aspects in resource allocation in smart environments are similar to 

large-scale optimization systems, which inspires the use of fast and scalable solvers. As an example, (Zhang et 

al., 2019) suggested an accelerated algorithm of optimal power flows as a powerball algorithm, which 

demonstrates how accelerated methods of optimization can enhance convergence and the cost of computing 

problems in constrained optimization environments (Jun, 2025; Soy, 2025). Practical system modelling and 

iteration is also applicable under tight constraints networks such as wind-integrated time-series load flow of a 

realistic distribution system, results in Muruganantham and Gnanadass demonstrated that time-varying 

behaviour and system-level testing are important in optimising the operational parameters (Muruganantham & 

Gnanadass, 2017; Veerappan, 2025). Corpus and Leite tested the FACTS contributions based on the branch 

flow model and a NewtonRaphson based model algorithm, and furthere provided information that realistic 

constraints and numerical stability is the determinant of reliable optimization results (Corpus & Leite, 2024; 

Kumar, 2025). All these works that are based on optimization are an indication that the modern smart 

infrastructures require both adaptive and computationally efficient solutions. 

Security and anomaly-aware intelligence on the IoT side are closely related to resource efficiency due 

to the fact that intrusion detection, abnormal traffic and adversarial conditions demand more computation and 

communication costs. The edge-based anomaly detection has been studied as a way of minimising the latency 

and bandwidth consumption because the data are processed near the devices. The authors (Yu et al., 2022) 

suggested an edge computing-based anomaly detection solution to IoT industrial sustainability, which shown 

the viability of intelligent detection at the edge, and still being responsive with limited resources (Abdullah, 

2025). Eskandari et al., 2020 presented Passban IDS on IoT edge devices, demonstrating that intelligent 

anomaly-based IoT edge devices can be crafted according to edge constraints, although model complexity and 

constantly up-to-date is still an issue (Eskandari et al., 2020). To enhance privacy and decentralisation, the 
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concept of federated learning (FL) has received massive adoption in collaborative intrusion detection. 

(Tabassum et al., 2022) offered FedGAN-IDS, a hybrid model of GANs and FL to enhance privacy when 

learning attack patterns, albeit at the cost of more coordination, and more training overhead (Brinda, 2025). 

Superior designs (Friha et al., 2023) suggested 2DF-IDS, in which FT privacy-guaranteed and decentralised 

FL-based IDS in industrial Ioot were proposed, and the trade-off between privacy and efficiency of the system 

was complied with (Friha et al., 2023). 

The necessity to have a hierarchical and scalable architecture is also demonstrated by recent FL-IDS 

systems when deployed in an actual IoT scenario. (Bhavsar et al., 2024) provided the FL-based intrusion 

detection system based on edge devices used in transportation IoT, which means that distributed learning could 

help to attain a better performance in detection and reduce the amount of raw data sharing, but at the cost of 

dozens of communication rounds and model aggregation (Bhavsar et al., 2024; Sarhan et al., 2022) developed 

a hierarchical blockchain-based federated learning system HBFL that is proposed to enhance both the 

coordination and trust between IoTs through collaborative intrusion detection by paying a price of additional 

computational and protocol overheads (Tamrakar, 2025). All these findings together indicate that intelligent 

IoT environments should be optimised, both in terms of energy and latency, and learning efficiency, privacy 

and scalable coordination. 

Regardless of the developments mentioned above, the majority of the existing works utilise learning 

models (e.g., neural computing, FL-based intelligence) and evolutionary optimization (e.g., GA-style global 

search) as separate pipelines or are oriented in one direction (e.g., precision of detection or stability of 

operation). In uncertainty-conscious optimization and learning-intelligent optimizers, it is regularly noted that 

there remains the challenge of design of the system to provide (i) predictive intelligence, (ii) global 

optimization, and (iii) low-overhead deployment over constraints (Li et al., 2021; Rahman, 2025; Ramya, 

2025). Moreover, the edge and federated IoT security investigations indicate that the continuous learning 

should be combined with the resource-sensitive scheduling, communication management, and tuning of system 

parameters to maintain the QoS in the dynamic networks (Bhavsar et al., 2024; Eskandari et al., 2020; Friha et 

al., 2023; Tamrakar, 2025; Brinda, 2025; Abdullah, 2025). Inspired by these shortcomings, this paper builds a 

closely integrated Neural Neural computing and GA-based multi-objective optimization model whereby 

resource allocation choices are dynamically optimised by multi-objective optimization based on QoS, energy 

consumption, and latency according to the context using context mining and neural computing predictive-code. 

System Architecture 

Overall Framework 

The AI-based resource optimization framework presented here assumes the form of a four-layer architecture 

that helps to deploy the smart operation in IoT-based smart environments to work intelligently, scale and 

consume less energy as shown in Figure 1. The IoT Sensing Layer, which consists of heterogeneous sensors 

and actuators, temperature, humidity, motion and energy metres that are spread throughout the environment, 

cheques physical and operational conditions constantly at the lowest level; these nodes are limited in nature by 

their energy, computation, and communication capabilities. Above this, the Edge Intelligence Layer adds 

lightweight neural computing modules which do the real time data processing, context awareness and local 

decision making, and alleviate the latency and unnecessary transmission of data to the centralised servers. The 

Optimization Layer uses the optimization engine based on genetic algorithms and exploits the neural 

predictions to apply multi-objective resource optimization to dynamically tune the parameters to the task 

scheduling, duty cycling, transmission power, offloading decisions to reduce the energy consumption and delay 

and increase the Quality of Service. Lastly, Cloud Coordination Layer offers long term systems intelligence by 
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enabling global analytics, storage of past data and periodic system model updates to allow continuous learning 

as well as system-wide coordination without excessive overhead to edge or sensing devices. 

 

Figure 1. Flowchart of the proposed ai-enabled neural–genetic algorithm framework for resource-efficient 

smart IOT environments 

Neural Computing Module 

The neural computing module is the central intelligence element of the proposed framework that will include 

real-time learning and adaptive decision-making at the edge layer. The module is implemented to do the context 

recognition, resource demand prediction and the adaptive control using a continuous presentation of sensor 

data provided by the IoT sensing layer. In order to run the computationally-heavy neural network models, on 

resource-constrained edge devices, a sparse Deep Neural Network (DNN) or Recurrent Neural Network 

(RNN/LSTM) structure is used, enabling the model to represent both spatial and temporal correlations in 

system behaviour. According to the perceived environmental situation, network traffic patterns, and residual 

energy levels, the neural model provides predictive outputs such as estimated workload intensity, predicted 

energy demand and priority-aware task classification. These outputs facilitate predictive resource control 

through determining important tasks and predicting the near future system demands hence facilitating low-

latency operation and avoidance of unwarranted computation and communication overheads in dynamic smart 

environment cases. 

Genetic Algorithm Open-End Optimization Module 

The Genetic Algorithm (GA) optimization module is capable of optimising important system parameters 

dynamically, such as task scheduling, the mechanism of distributing responsibility to nodes, transmission 

power regulation, and edge offloading decisions to smart IoT systems to ensure efficient utilisation of resources 

in smart IoT environments. All solutions to a problem are represented as chromosomes. 𝐶 =

{𝑃𝑡𝑥, 𝐷𝑐𝑦𝑐𝑙𝑒, 𝑇𝑎𝑙𝑙𝑜𝑐 , 𝑂𝑟𝑎𝑡𝑖𝑜}, representing transmission power, duty cycle, task allocation priority, and 

offloading ratio, respectively. Guided by the predictive outputs of the neural computing module, the GA 

evaluates each chromosome using a multi-objective fitness function defined as 

𝐹 = 𝛼𝐸𝑚𝑖𝑛 + 𝛽𝐿𝑚𝑖𝑛 + 𝛾𝑄𝑚𝑎𝑥, 

where 𝐸𝑚𝑖𝑛 denotes minimized energy consumption, 𝐿𝑚𝑖𝑛 represents reduced end-to-end latency, and 

𝑄𝑚𝑎𝑥 corresponds to maximized Quality of Service (QoS) metrics, while 𝛼, 𝛽 and 𝛾 are weighting factors that 
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balance the relative importance of each objective, as summarized in Table 1. The GA is an iterative process 

that relaxes to an ideal resource composition and guarantees the energy-efficient, low-latency and QoS-aware 

system operation, under a dynamic and heterogeneous environment of IoTs. 

Table 1. Genetic algorithm optimization parameters and description 

Component Symbol / Parameter Description 

Chromosome 

Representation 

𝐶

= {𝑃𝑡𝑥, 𝐷𝑐𝑦𝑐𝑙𝑒 , 𝑇𝑎𝑙𝑙𝑜𝑐 , 𝑂𝑟𝑎𝑡𝑖𝑜} 

Encodes a candidate resource configuration 

consisting of transmission power, node duty cycle, 

task allocation priority, and edge–cloud offloading 

ratio 

Transmission 

Power 

𝑃𝑡𝑥 Controls the communication power level of IoT 

nodes to balance energy consumption and 

connectivity 

Duty Cycle 𝐷𝑐𝑦𝑐𝑙𝑒 Determines active and sleep intervals of IoT nodes to 

reduce unnecessary energy usage 

Task Allocation 𝑇𝑎𝑙𝑙𝑜𝑐 Defines task scheduling priority among IoT and edge 

nodes 

Offloading Ratio 𝑂𝑟𝑎𝑡𝑖𝑜 Specifies the proportion of tasks processed locally 

versus offloaded to edge or cloud 

Fitness Function 𝐹 = 𝛼𝐸𝑚𝑖𝑛 + 𝛽𝐿𝑚𝑖𝑛 +

𝛾𝑄𝑚𝑎𝑥 

Multi-objective function used to evaluate each 

chromosome 

Energy Objective 𝐸𝑚𝑖𝑛 Represents minimized energy consumption across 

the IoT network 

Latency Objective 𝐿𝑚𝑖𝑛 Represents minimized end-to-end communication 

and processing delay 

QoS Objective 𝑄𝑚𝑎𝑥 Represents maximized Quality of Service metrics 

such as throughput and reliability 

Weighting Factors 𝛼, 𝛽, 𝛾 Control the relative importance of energy, latency, 

and QoS objectives 

Optimization 

Operators 

Selection, Crossover, 

Mutation 

Evolutionary operators used to explore the solution 

space and converge toward optimal configurations 

Methodology 

The proposed approach combines AI-implemented neural computation and genetic algorithm (GA)-based 

optimization in the crafting of intelligent, adaptive and resource-optimised operation in the IoT-based smart 

environments. The methodology is designed into three fundamental elements. 

Data Acquisition and Context-Aware Neural Modelling 

Information Gathering and Processing 

Nodes of IoT sensors that are located throughout the smart environment will constantly pull multidimensional 

information, such as environmental parameters, power levels in residues, traffic density, and the state of activity 

in devices. To improve the data reliability and stability of the model, the raw data received is preprocessed by 

normalising and outlier elimination, noise elimination processing to counter the sensor error and 

communication interruptions. 



Natural and Engineering Sciences        825 
 

Neural Learning Through Context Awareness 

At the edge layer, a lightweight neural computing model is used to identify contextual information on the 

processed sensor data. The neural model is capable of majorly achieving successfully the realisation of 

dynamic behaviour of the system by learning the temporal and spatial correlations among the IoT nodes thus 

being able to recognise properly the operation conditions of the system like high-load conditions, energy-

demanding states, and even latency-sensitive situations. 

Demand Estimation of Resources 

Along the context learnt, the neural model projects short-term workload intensity and energy needs of the IoT 

network as illustrated in Figure 2. These forecasts aid in proactive resource allocation since a demand of the 

system in future is known and therefore there is time to adjust scheduling, communication and power control 

interactions as a result of which unneeded computation as well as communication overheads are eliminated 

and overall system performance is enhanced. 

 

Figure 2. Data acquisition and context-aware neural modeling pipeline for predictive resource demand 

estimation in smart iot environments 

Genetic Algorithm–Based Resource Optimization 

Encoding of Resources and Fitness Evaluation 

According to the workload and energy forecasting calculations made by the neural computing module, the 

genetic algorithm coded the individual candidate solution into a chromosome corresponding to a full resource 

configuration, including the transmission power, node duty cycle, task scheduling priority, and edge -cloud 

offloading fraction. Multi-objective fitness function is used to reach the cumulative objective of minimising 

energy utilise and latency of end to end and maximising Quality of Service (QoS) to ensure that the system 

operates harmoniously and efficiently with the inherent factors of heterogeneous IoT. 
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Search: Evolutionary Search and Adaptive Optimization 

These steps are applied with the help of the selection, crossover and mutation operations that give the GA the 

opportunity to efficiently explore the global search space, as Figure 3 demonstrates. This evolutionary change 

enables the optimizer to adjust to the dynamism of environmental conditions and varying load on the networks, 

in dropleting to near-optimal resource allocation schemes which sustain stability, scalability and performance 

of the systems in real time deployments of smart environments. 

 

Figure 3. Genetic algorithm–based resource optimization workflow guided by neural predictions in 

smart IOT environments 

Hybrid Neural–GA Decision Execution and Feedback Loop 

Optimised Decision Deployment 

The best resource setup generated by the genetic algorithm is actively implemented in the IoT system to 

regulate the task scheduling, power distribution, duty cycling, and edge offloading of the cloud in real time. 

This implementation stage is necessary to real-time execution of the optimization decision-making in the 

system operation, to efficiently utilise the available resources in varying environmental and network contexts. 

Constant Monitoring of Performance 

Upon deployment, critical performance indicators that the system constantly monitors are energy consumption, 

end-to-end latency, throughput and Quality of Service (QoS). This real-time tracking enables the framework 

to gauge the effectiveness of the implemented optimization decisions and note the deviations due to variation 

in workload, node failures or environmental changes. 

Closed-Loop Learning and Adaptive 

Feedback mechanism causes the performance data to be fed back to the neural computing module allowing the 

model to keep on updating itself and learning as shown in Figure 4. Such a closed-loop loop neural prediction 

and GA optimization enable long-term adaptability, scalability and resiliency of the smart environment without 

imposing significant computational overhead and thus this framework is applicable in resources-constrained 

IoT deployments. 
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Figure 4. Closed-loop hybrid Neural–GA decision execution and feedback mechanism for adaptive 

resource optimization in smart IoT environments 

Experimental Setup 

The usefulness of the proposed AI-based Neural–Genetic Algorithm (Neural-GA) optimization framework was 

proved by preparing a full-fledged simulation-based experimental environment replicating the realistic 

conditions in IoT-enabled smart environment within dynamic workload and strict resources limitations. The 

experiments were made with a hybrid MATLAB/NS-3 simulation environment which simulates heterogeneous 

IoT nodes having limited energy, computation and communication capabilities. The simulated environment is 

composed of edge and cloud layers as well as that is used to test intelligent decision-making in real-time and 

long-term optimization. The network involves 100-500 randomly distributed IoT nodes on a 500 m x 500 m 

base and performs under communication protocols based on IEEE 802.15.4/LoRa with event-driven and 

periodic traffic pattern. The nodes were set with 2-5 joules of energy and a transmission range of 30-50 metres, 

which allowed the real modelling of smart environment constraints. 

The neural computing module was introduced at the edge layer by a small-sized deep-neural-network 

to make it possible on the resource-constrained device, taking sensor measurements, traffic load, remaining 

energy and node activity as input features, as shown in Table 2. A continuous adaptation was supported by 

online incremental learning with a learning rate of 0.001. According to neural forecasts, multi-objective 

resource optimization was carried out based on a genetic algorithm with a population size of 30 and 50 

generations conducted with the use of tournament selection, cross-over, and mutation operations. The 

suggested system was compared with the cases of static heuristic-based, neural-only, and GA-only baseline. 

The total performance was evaluated based on the important metrics such as average energy usage, end-to-end 

latency, throughput, network lifetime and QoS satisfaction ratio in different node densities, dynamic loads, and 

energy constrained environments. To be able to provide statistical reliability and robustness in the observed 

performance increases, every experiment was repeated several times and the results that were obtained were 

averaged. 
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Table 2. Simulation and experimental setup parameters 

Category Parameter Value / Description 

Simulation Platform Environment MATLAB / NS-3 hybrid 

Deployment Area Area Size 500 m × 500 m 

IoT Nodes Number of Nodes 100–500 

Communication Protocol IEEE 802.15.4 / LoRa 

Traffic Model Traffic Type Event-driven and periodic 

Energy Model Initial Energy 2–5 Joules 

Transmission Range 30–50 meters 

Neural Model Architecture Lightweight DNN 

Neural Inputs Features Sensor data, traffic, energy, activity 

Learning Rate Neural Training 0.001 

Training Mode Learning Type Online incremental 

GA Population Population Size 30 

GA Iterations Generations 50 

Selection GA Operator Tournament selection 

Crossover Rate GA Parameter 0.8 

Mutation Rate GA Parameter 0.05 

Evaluation Metrics Metrics Energy, latency, throughput, lifetime, QoS 

Baselines Comparison Schemes Heuristic, Neural-only, GA-only 
 

Results and Discussion 

Energy Efficiency, Network Lifetime Enhancements 

The models show that the suggested AI-based Neural–GA model can resolve significant energy savings using 

different network densities and workload scenarios. In comparison with the heuristic-based, neural-only, and 

GA-only optimization approaches, the proposed method allows to decrease the overall energy consumption 

several times, approximately by 25 to 35 percent; it is partially explained by proactive workload prediction 

and optimised duty cycling. Directly due to the lowered energy consumption, the network lifetime has 

increased by over 40 times, which challenges the validity of the coordinating neural prediction and 

evolutionary optimization in sustaining the operational capabilities of resource-limited IoT nodes. 

Latency Minimization and Improvement of Quality of Service 

The hybrid optimization framework has a great influence on end-to-end latency and Quality of Service (QoS), 

especially in situations of high-traffic and dynamical workloads. Taking advantage of neural models to perform 

real-time context awareness and a global optimization based on GA to perform task scheduling and offloading 

decisions enables the system to reduce the average latency by almost a third of made by baseline methods. 

This enhancement guarantees promptness in delivery of data and uniform quality of performance-wise to the 

smart environment application that is sensitive in terms of latency. 

Comparative Performance/ Adaptability 

In all compared settings, the offered Neural–GA framework produces better results as compared to the neural 

computing or genetic algorithm methods. Neural-only models are not able to optimise globally, and are only 

effective at prediction, while GA-only methods require more time to converge, and are not being guided by 
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predictions. The hybrid design will work well to merge the works of the two techniques where adaptation to 

environmental changes and workload variations is quick and the resources allocation was near-optimal. 

Scalability, Robustness and Practical Implications 

The self-correcting learning and optimization process makes the proposed framework more scalable and robust 

to enable it to retain its performance at large scales in case of network size and traffic density growth as in 

shown in Figure 5. The compromise between computational efficiency, flexibility and the accuracy of the 

optimizations as presented in Table 3 are very good making the solution highly applicable in practise in large 

scale smart cities, smart buildings and in industrial IoT systems. In general, the findings prove that the 

suggested methodology is effective in overcoming the most important issues of next-generation IoT-based 

smart environments offering an intelligent, autonomous, and resource-efficient performance of the system. 

 

Figure 5. Energy consumption comparison of heuristic-based, neural-only, ga-only, and proposed 

neural–ga optimization approaches under varying IoT network sizes 

Table 3. Performance comparison and key observations of optimization approaches 

Performance Aspect Heuristic-Based Neural-Only GA-Only Proposed Neural–GA 

Energy Consumption High Medium Medium 
Low (25–35% 

reduction) 

Network Lifetime Low Medium Medium 
High (>40% 

improvement) 

End-to-End Latency High Medium Medium Low (~30% reduction) 

QoS Satisfaction Low Medium Medium High and stable 

Adaptability to Workload 

Changes 
Low Medium Medium 

High (predictive + 

adaptive) 

Convergence Efficiency 
Fast but 

suboptimal 

Fast, locally 

optimal 

Slow, 

global 
Fast and near-optimal 

Scalability with Network Size Limited Moderate Moderate High scalability 

Robustness under Dynamic 

Conditions 
Low Medium Medium High robustness 

Overall System Performance Poor Moderate Moderate Superior 
 



Natural and Engineering Sciences        830 
 

Conclusion 

The paper suggested an AI-based hybrid model with the combination of neural computing and genetic 

algorithm-based optimization that results in a self-resource-saving and flexible operation of the internet of 

things-enabled smart environment. The proposed Neural–GA can be used to answer essential problems 

associated with energy usage, latency, and Quality of Service in heterogeneous and dynamic IoT systems by 

synergistically integrating context-aware predictive intelligence, and multi-objective evolutionary 

optimization. High levels of simulation have shown that the framework is highly effective in low energy 

consumption, lower end to end latency and longer end to end network life than traditional heuristic based and 

standalone AI techniques without compromising on their QoS. The optimistic closed-loop learning and 

optimization mechanism also increases scalability, resiliency, and long-term scalability, which means that the 

proposed solution can be used in large-scale applications to the smart cities, smart buildings, and industrial IoT 

systems. Future studies will be aimed at the extension of the framework to federated learning implementation 

of privacy-preserving intelligence, hardware-aware optimization of embedded systems, and validation on a 

real testbed to better show its practical feasibility and impact. 
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