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Abstract

The recent accelerated growth of Internet of Things (IoT) implementations in smart environments has
amplified the situation regarding the energy efficiency and computational scalability coupled with dynamic
resource management in heterogeneous and timevarying conditions. Old-fashioned centralised and non-
adaptive based optimization mechanisms are growing to be ineffective mainly because they are very rigid,
and they consume a lot of overhead. In order to overcome these limitations, the given paper will introduce
an Al-assisted hybrid optimization strategy which incorporates the principles of neural computing with
those of genetic algorithm (GA)-run evolutionary optimization to facilitate resource-optimal and intelligent
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performance of IoT-driven smart surroundings. Under the suggested methodology, lightweight neural
computing frameworks implemented at the edge tier offer real-time local awareness and forecast estimation
of the workload, energy requirements and network states of affair. A multi-objective GA then uses these
predictions to produce dynamic optimization of the critical system parameters such as task scheduling, duty
cycling, transmission power and edge-cloud offloading decisions. Closed-loop feedback allows the hybrid
neural to act proactively and to implement global optimization and dynamically adapt itself through a hybrid
neural structure. Comprehensive simulations of the framework on the basis of different node densities and
traffic conditions prove that the proposed framework outperforms the traditional heuristic, neural-only, and
GA-only strategies through optimization significantly. Experiments have shown significant energy savings
and latency at the end, and significant increases in network lifetime and Quality of service (QoS)
sustainability. The solution proposed is scalable, computationally efficient and is well adapted to the
deployment in next-generation smart cities, smart buildings and industrial loT systems that need smart,
autonomous and resource-aware operation.
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Introduction

The fast evolution of Internet of things (IoT) technologies has allowed creating such intelligent smart
environments as the smart home, smart cities, smart agriculture, and industrial automation systems. These
environments are based on the mass implementation of heterogeneous IoT equipment with sensing,
communication and the limited processing of information to help monitor it in real time and make autonomous
decisions. Even though smart environments built on [oT enhance efficiency and ensure the comfort of the
users, numerous challenges exist pertaining to energy consumption, bandwidth usage, and scalability in
computation with limited embedded devices and dynamism of any operating environment.

The traditional methods of resource management and optimization used in the IoT systems are
effectively based on the traditional heuristic or centralised control systems. These do not work well in dynamic
and large-scale environments, where they cannot be changed on the fly and have a lot of overhead and latency
in terms of communication. Besides, centralization represents a limitation of scalability and single-point
failures of centralised optimization, as it would not suit the next-generation smart environments with varying
workloads, mobility, and heterogeneous resources requirements.

The latest developments of Artificial Intelligence (Al) have shown a good potential of the idea of
intelligent management of resources within an IoT environment. The models of neural computing allow the
data-driven learning, detecting the situation and making decisions in advance, and evolutionary algorithms like
Genetic Algorithms (GAs) offer robust optimization of a global scope. Nevertheless, neural models can achieve
local optimum solutions in the presence of a complex system dynamics, but in general, GA-based methods can
consume large amounts of computation and are not capable of adapting to real-time conditions when used
separately.

To address these issues, this paper will introduce an Al-based hybrid model that unifies the neural
computing to adaptive context-aware intelligence with GA-based multi-objective optimization to optimally
use resources. The suggested system facilitates real-time education, automatic adjustment, and worldwide
optimization among the heterogeneous [oT nodes. The key contributions of this paper are as follows: (i) a new
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hybrid Neural-GA architecture based on the resources-efficient design of smart environments is proposed, (ii)
the creation of smart context-aware decision-making based on the lightweight neural models is presented, (iii)
a multi-objective strategy based on the GA optimization aimed to reduce energy consumption, latency, and
throughput is formulated, and (iv) a complete evaluation of the results is presented that proves the superiority
of the proposed approach to conventional and standalone Al-based solutions.

Related Work

The optimization of [oT-enabled smart environments by using Al has emerged as one of the key areas of interest
on how to maximise efficiency, scalability, and autonomy. Nonlinear LLD Learning-based optimization
strategies have become the focus of attention since they are capable of modelling the dynamics in a nonlinear
system and adjusting to varying workloads. The issues of regioselectivity The study by Li et al., 2021 lists
intelligent optimization algorithms based on learning and points out that when their system states are uncertain
and multidimensional, data-driven optimizers could be better than their classical counterparts, but still
encounter a challenge in robustness, interpretability, and deployment overhead in constrained systems (Li et
al., 2021). At the same time, uncertainty-based optimization has been widely examined in multi-faceted cyber-
physical infrastructures, with requirement in uncertainty-sensitive formulations and stochastic/robust
methodology. The review of optimization techniques in the uncertainty context by (Roald et al., 2023) revealed
that scalable decision-making mandates a compromise in model accuracy and computational tractability
particularly in renewable variability and operational limitations (Rahman, 2025). On the same note, (Zhao &
You, 2022; Punam, 2025; Reginald, 2025) aimed to introduce machine learning-aided robust optimization in
managing disjunctive uncertainties and they found that a combination of predictive learning and optimization
can increase the resilience of operations (Ramya, 2025; Rahim, 2025; Poornimadarshini, 2025).

The uncertainty and constraint aspects in resource allocation in smart environments are similar to
large-scale optimization systems, which inspires the use of fast and scalable solvers. As an example, (Zhang et
al., 2019) suggested an accelerated algorithm of optimal power flows as a powerball algorithm, which
demonstrates how accelerated methods of optimization can enhance convergence and the cost of computing
problems in constrained optimization environments (Jun, 2025; Soy, 2025). Practical system modelling and
iteration is also applicable under tight constraints networks such as wind-integrated time-series load flow of a
realistic distribution system, results in Muruganantham and Gnanadass demonstrated that time-varying
behaviour and system-level testing are important in optimising the operational parameters (Muruganantham &
Gnanadass, 2017; Veerappan, 2025). Corpus and Leite tested the FACTS contributions based on the branch
flow model and a NewtonRaphson based model algorithm, and furthere provided information that realistic
constraints and numerical stability is the determinant of reliable optimization results (Corpus & Leite, 2024;
Kumar, 2025). All these works that are based on optimization are an indication that the modern smart
infrastructures require both adaptive and computationally efficient solutions.

Security and anomaly-aware intelligence on the [oT side are closely related to resource efficiency due
to the fact that intrusion detection, abnormal traffic and adversarial conditions demand more computation and
communication costs. The edge-based anomaly detection has been studied as a way of minimising the latency
and bandwidth consumption because the data are processed near the devices. The authors (Yu et al., 2022)
suggested an edge computing-based anomaly detection solution to IoT industrial sustainability, which shown
the viability of intelligent detection at the edge, and still being responsive with limited resources (Abdullah,
2025). Eskandari et al., 2020 presented Passban IDS on IoT edge devices, demonstrating that intelligent
anomaly-based IoT edge devices can be crafted according to edge constraints, although model complexity and
constantly up-to-date is still an issue (Eskandari et al., 2020). To enhance privacy and decentralisation, the



Natural and Engineering Sciences 822

concept of federated learning (FL) has received massive adoption in collaborative intrusion detection.
(Tabassum et al., 2022) offered FedGAN-IDS, a hybrid model of GANs and FL to enhance privacy when
learning attack patterns, albeit at the cost of more coordination, and more training overhead (Brinda, 2025).
Superior designs (Friha et al., 2023) suggested 2DF-IDS, in which FT privacy-guaranteed and decentralised
FL-based IDS in industrial loot were proposed, and the trade-off between privacy and efficiency of the system
was complied with (Friha et al., 2023).

The necessity to have a hierarchical and scalable architecture is also demonstrated by recent FL-IDS
systems when deployed in an actual IoT scenario. (Bhavsar et al., 2024) provided the FL-based intrusion
detection system based on edge devices used in transportation [oT, which means that distributed learning could
help to attain a better performance in detection and reduce the amount of raw data sharing, but at the cost of
dozens of communication rounds and model aggregation (Bhavsar et al., 2024; Sarhan et al., 2022) developed
a hierarchical blockchain-based federated learning system HBFL that is proposed to enhance both the
coordination and trust between loTs through collaborative intrusion detection by paying a price of additional
computational and protocol overheads (Tamrakar, 2025). All these findings together indicate that intelligent
IoT environments should be optimised, both in terms of energy and latency, and learning efficiency, privacy
and scalable coordination.

Regardless of the developments mentioned above, the majority of the existing works utilise learning
models (e.g., neural computing, FL-based intelligence) and evolutionary optimization (e.g., GA-style global
search) as separate pipelines or are oriented in one direction (e.g., precision of detection or stability of
operation). In uncertainty-conscious optimization and learning-intelligent optimizers, it is regularly noted that
there remains the challenge of design of the system to provide (i) predictive intelligence, (ii) global
optimization, and (iii) low-overhead deployment over constraints (Li et al., 2021; Rahman, 2025; Ramya,
2025). Moreover, the edge and federated IoT security investigations indicate that the continuous learning
should be combined with the resource-sensitive scheduling, communication management, and tuning of system
parameters to maintain the QoS in the dynamic networks (Bhavsar et al., 2024; Eskandari et al., 2020; Friha et
al., 2023; Tamrakar, 2025; Brinda, 2025; Abdullah, 2025). Inspired by these shortcomings, this paper builds a
closely integrated Neural Neural computing and GA-based multi-objective optimization model whereby
resource allocation choices are dynamically optimised by multi-objective optimization based on QoS, energy
consumption, and latency according to the context using context mining and neural computing predictive-code.

System Architecture
Overall Framework

The Al-based resource optimization framework presented here assumes the form of a four-layer architecture
that helps to deploy the smart operation in IoT-based smart environments to work intelligently, scale and
consume less energy as shown in Figure 1. The IoT Sensing Layer, which consists of heterogeneous sensors
and actuators, temperature, humidity, motion and energy metres that are spread throughout the environment,
cheques physical and operational conditions constantly at the lowest level; these nodes are limited in nature by
their energy, computation, and communication capabilities. Above this, the Edge Intelligence Layer adds
lightweight neural computing modules which do the real time data processing, context awareness and local
decision making, and alleviate the latency and unnecessary transmission of data to the centralised servers. The
Optimization Layer uses the optimization engine based on genetic algorithms and exploits the neural
predictions to apply multi-objective resource optimization to dynamically tune the parameters to the task
scheduling, duty cycling, transmission power, offloading decisions to reduce the energy consumption and delay
and increase the Quality of Service. Lastly, Cloud Coordination Layer offers long term systems intelligence by
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enabling global analytics, storage of past data and periodic system model updates to allow continuous learning
as well as system-wide coordination without excessive overhead to edge or sensing devices.

IoT Data Sensing and

Collection

Genetic Algorithm-Based

Resource Optimization

Optimized Decision

Deployment and System

Cloud Coordination and
Feedback-Based Learning

Figure 1. Flowchart of the proposed ai-enabled neural-genetic algorithm framework for resource-efficient
smart IOT environments

Neural Computing Module

The neural computing module is the central intelligence element of the proposed framework that will include
real-time learning and adaptive decision-making at the edge layer. The module is implemented to do the context
recognition, resource demand prediction and the adaptive control using a continuous presentation of sensor
data provided by the IoT sensing layer. In order to run the computationally-heavy neural network models, on
resource-constrained edge devices, a sparse Deep Neural Network (DNN) or Recurrent Neural Network
(RNN/LSTM) structure is used, enabling the model to represent both spatial and temporal correlations in
system behaviour. According to the perceived environmental situation, network traffic patterns, and residual
energy levels, the neural model provides predictive outputs such as estimated workload intensity, predicted
energy demand and priority-aware task classification. These outputs facilitate predictive resource control
through determining important tasks and predicting the near future system demands hence facilitating low-
latency operation and avoidance of unwarranted computation and communication overheads in dynamic smart
environment cases.

Genetic Algorithm Open-End Optimization Module

The Genetic Algorithm (GA) optimization module is capable of optimising important system parameters
dynamically, such as task scheduling, the mechanism of distributing responsibility to nodes, transmission
power regulation, and edge offloading decisions to smart [oT systems to ensure efficient utilisation of resources
in smart IoT environments. All solutions to a problem are represented as chromosomes. C =
{Ptx, Deycier Tatioes OT,m-O}, representing transmission power, duty cycle, task allocation priority, and
offloading ratio, respectively. Guided by the predictive outputs of the neural computing module, the GA
evaluates each chromosome using a multi-objective fitness function defined as

F = aEpmin + BLmin + YQmax:

where E,,,;, denotes minimized energy consumption, L,,;, represents reduced end-to-end latency, and
Qumax corresponds to maximized Quality of Service (QoS) metrics, while «, § and y are weighting factors that
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balance the relative importance of each objective, as summarized in Table 1. The GA is an iterative process
that relaxes to an ideal resource composition and guarantees the energy-efficient, low-latency and QoS-aware
system operation, under a dynamic and heterogeneous environment of [oTs.

Table 1. Genetic algorithm optimization parameters and description

Component Symbol / Parameter Description
Chromosome C Encodes a candidate resource configuration
Representation = {Ptx, Dcyctes Tattocs Orati O} consisting of transmission power, node duty cycle,
task allocation priority, and edge—cloud offloading
ratio
Transmission Py Controls the communication power level of IoT
Power nodes to balance energy consumption and
connectivity
Duty Cycle Deycre Determines active and sleep intervals of IoT nodes to
reduce unnecessary energy usage
Task Allocation Taitoc Defines task scheduling priority among IoT and edge
nodes
Offloading Ratio Oratio Specifies the proportion of tasks processed locally
versus offloaded to edge or cloud
Fitness Function F =aEnpin + BLpin + Multi-objective function used to evaluate each
YQmax chromosome
Energy Objective Epin Represents minimized energy consumption across
the IoT network
Latency Objective Lnin Represents minimized end-to-end communication
and processing delay
QoS Objective Qmax Represents maximized Quality of Service metrics
such as throughput and reliability
Weighting Factors a B,y Control the relative importance of energy, latency,
and QoS objectives
Optimization Selection, Crossover, Evolutionary operators used to explore the solution
Operators Mutation space and converge toward optimal configurations
Methodology

The proposed approach combines Al-implemented neural computation and genetic algorithm (GA)-based
optimization in the crafting of intelligent, adaptive and resource-optimised operation in the loT-based smart
environments. The methodology is designed into three fundamental elements.

Data Acquisition and Context-Aware Neural Modelling
Information Gathering and Processing

Nodes of [oT sensors that are located throughout the smart environment will constantly pull multidimensional
information, such as environmental parameters, power levels in residues, traffic density, and the state of activity
in devices. To improve the data reliability and stability of the model, the raw data received is preprocessed by
normalising and outlier elimination, noise elimination processing to counter the sensor error and
communication interruptions.
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Neural Learning Through Context Awareness

At the edge layer, a lightweight neural computing model is used to identify contextual information on the
processed sensor data. The neural model is capable of majorly achieving successfully the realisation of
dynamic behaviour of the system by learning the temporal and spatial correlations among the IoT nodes thus
being able to recognise properly the operation conditions of the system like high-load conditions, energy-
demanding states, and even latency-sensitive situations.

Demand Estimation of Resources

Along the context learnt, the neural model projects short-term workload intensity and energy needs of the [oT
network as illustrated in Figure 2. These forecasts aid in proactive resource allocation since a demand of the
system in future is known and therefore there is time to adjust scheduling, communication and power control
interactions as a result of which unneeded computation as well as communication overheads are eliminated
and overall system performance is enhanced.

IoT Sensor Data Collection
Environmental data
Residual energy

A4

Data Preprocessing
Normalization
Noise filtering, Outlier removal

A4

Edge-Level Neural Computing
Lightweight DNN / RNN / LSTM,
Temporal & spatial learning

Context Awareness
High-load detection
Energy-critical states, Latency-
sensitive tasks

Predictive Outputs
Workload intensity, Energy
demand estimation

Figure 2. Data acquisition and context-aware neural modeling pipeline for predictive resource demand
estimation in smart iot environments

Genetic Algorithm—Based Resource Optimization
Encoding of Resources and Fitness Evaluation

According to the workload and energy forecasting calculations made by the neural computing module, the
genetic algorithm coded the individual candidate solution into a chromosome corresponding to a full resource
configuration, including the transmission power, node duty cycle, task scheduling priority, and edge -cloud
offloading fraction. Multi-objective fitness function is used to reach the cumulative objective of minimising
energy utilise and latency of end to end and maximising Quality of Service (QoS) to ensure that the system
operates harmoniously and efficiently with the inherent factors of heterogeneous loT.
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Search: Evolutionary Search and Adaptive Optimization

These steps are applied with the help of the selection, crossover and mutation operations that give the GA the
opportunity to efficiently explore the global search space, as Figure 3 demonstrates. This evolutionary change
enables the optimizer to adjust to the dynamism of environmental conditions and varying load on the networks,
in dropleting to near-optimal resource allocation schemes which sustain stability, scalability and performance
of the systems in real time deployments of smart environments.

Neural Prediction Inputs

Workload intensity
Energy demand

Optimized Resource Configuration Chromosome Encoding
Energy-efficient Transmission power

Low-latency, QoS-aware Duty cycle
Task priority, Offloading ratio
Genetic Operations Fitness Evaluation
Energy minimization

Selection
Crossover ¢ Latency reduction
Mutation QoS maximization

Figure 3. Genetic algorithm—based resource optimization workflow guided by neural predictions in
smart [OT environments

Hybrid Neural-GA Decision Execution and Feedback Loop
Optimised Decision Deployment

The best resource setup generated by the genetic algorithm is actively implemented in the IoT system to
regulate the task scheduling, power distribution, duty cycling, and edge offloading of the cloud in real time.
This implementation stage is necessary to real-time execution of the optimization decision-making in the
system operation, to efficiently utilise the available resources in varying environmental and network contexts.

Constant Monitoring of Performance

Upon deployment, critical performance indicators that the system constantly monitors are energy consumption,
end-to-end latency, throughput and Quality of Service (QoS). This real-time tracking enables the framework
to gauge the effectiveness of the implemented optimization decisions and note the deviations due to variation
in workload, node failures or environmental changes.

Closed-Loop Learning and Adaptive

Feedback mechanism causes the performance data to be fed back to the neural computing module allowing the
model to keep on updating itself and learning as shown in Figure 4. Such a closed-loop loop neural prediction
and GA optimization enable long-term adaptability, scalability and resiliency of the smart environment without
imposing significant computational overhead and thus this framework is applicable in resources-constrained
IoT deployments.
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GA-Optimized Resource Configuration
Task scheduling
Power allocation
Duty cycling, Edge—cloud offloading

IoT System Execution
Real-time control actions
Resource utilization

Performance Monitoring Feedback Mechanism
Energy consumption
Latency
Throughput, QoS

Performance data collection

Neural Model Update
Continuous learning
Adaptive prediction

Figure 4. Closed-loop hybrid Neural-GA decision execution and feedback mechanism for adaptive
resource optimization in smart IoT environments

Experimental Setup

The usefulness of the proposed Al-based Neural-Genetic Algorithm (Neural-GA) optimization framework was
proved by preparing a full-fledged simulation-based experimental environment replicating the realistic
conditions in IoT-enabled smart environment within dynamic workload and strict resources limitations. The
experiments were made with a hybrid MATLAB/NS-3 simulation environment which simulates heterogeneous
IoT nodes having limited energy, computation and communication capabilities. The simulated environment is
composed of edge and cloud layers as well as that is used to test intelligent decision-making in real-time and
long-term optimization. The network involves 100-500 randomly distributed [oT nodes on a 500 m x 500 m
base and performs under communication protocols based on IEEE 802.15.4/LoRa with event-driven and
periodic traffic pattern. The nodes were set with 2-5 joules of energy and a transmission range of 30-50 metres,
which allowed the real modelling of smart environment constraints.

The neural computing module was introduced at the edge layer by a small-sized deep-neural-network
to make it possible on the resource-constrained device, taking sensor measurements, traffic load, remaining
energy and node activity as input features, as shown in Table 2. A continuous adaptation was supported by
online incremental learning with a learning rate of 0.001. According to neural forecasts, multi-objective
resource optimization was carried out based on a genetic algorithm with a population size of 30 and 50
generations conducted with the use of tournament selection, cross-over, and mutation operations. The
suggested system was compared with the cases of static heuristic-based, neural-only, and GA-only baseline.
The total performance was evaluated based on the important metrics such as average energy usage, end-to-end
latency, throughput, network lifetime and QoS satisfaction ratio in different node densities, dynamic loads, and
energy constrained environments. To be able to provide statistical reliability and robustness in the observed
performance increases, every experiment was repeated several times and the results that were obtained were
averaged.
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Table 2. Simulation and experimental setup parameters

Category Parameter Value / Description
Simulation Platform Environment MATLAB / NS-3 hybrid
Deployment Area Area Size 500 m x 500 m
IoT Nodes Number of Nodes 100-500
Communication Protocol IEEE 802.15.4 / LoRa
Traffic Model Traffic Type Event-driven and periodic
Energy Model Initial Energy 2-5 Joules
Transmission Range 30-50 meters
Neural Model Architecture Lightweight DNN
Neural Inputs Features Sensor data, traffic, energy, activity
Learning Rate Neural Training 0.001
Training Mode Learning Type Online incremental
GA Population Population Size 30
GA TIterations Generations 50
Selection GA Operator Tournament selection
Crossover Rate GA Parameter 0.8
Mutation Rate GA Parameter 0.05
Evaluation Metrics Metrics Energy, latency, throughput, lifetime, QoS
Baselines Comparison Schemes Heuristic, Neural-only, GA-only

Results and Discussion
Energy Efficiency, Network Lifetime Enhancements

The models show that the suggested Al-based Neural-GA model can resolve significant energy savings using
different network densities and workload scenarios. In comparison with the heuristic-based, neural-only, and
GA-only optimization approaches, the proposed method allows to decrease the overall energy consumption
several times, approximately by 25 to 35 percent; it is partially explained by proactive workload prediction
and optimised duty cycling. Directly due to the lowered energy consumption, the network lifetime has
increased by over 40 times, which challenges the validity of the coordinating neural prediction and
evolutionary optimization in sustaining the operational capabilities of resource-limited IoT nodes.

Latency Minimization and Improvement of Quality of Service

The hybrid optimization framework has a great influence on end-to-end latency and Quality of Service (QoS),
especially in situations of high-traffic and dynamical workloads. Taking advantage of neural models to perform
real-time context awareness and a global optimization based on GA to perform task scheduling and offloading
decisions enables the system to reduce the average latency by almost a third of made by baseline methods.
This enhancement guarantees promptness in delivery of data and uniform quality of performance-wise to the
smart environment application that is sensitive in terms of latency.

Comparative Performance/ Adaptability

In all compared settings, the offered Neural-GA framework produces better results as compared to the neural
computing or genetic algorithm methods. Neural-only models are not able to optimise globally, and are only
effective at prediction, while GA-only methods require more time to converge, and are not being guided by
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predictions. The hybrid design will work well to merge the works of the two techniques where adaptation to
environmental changes and workload variations is quick and the resources allocation was near-optimal.

Scalability, Robustness and Practical Implications

The self-correcting learning and optimization process makes the proposed framework more scalable and robust
to enable it to retain its performance at large scales in case of network size and traffic density growth as in
shown in Figure 5. The compromise between computational efficiency, flexibility and the accuracy of the
optimizations as presented in Table 3 are very good making the solution highly applicable in practise in large
scale smart cities, smart buildings and in industrial IoT systems. In general, the findings prove that the
suggested methodology is effective in overcoming the most important issues of next-generation [oT-based
smart environments offering an intelligent, autonomous, and resource-efficient performance of the system.

1.00

0.95

0.90

0.85 1

Normalized Performance Index
o
o]
o

—8— Heuristic-based
0.65 - Neural-only
—8— GA-only

0.60 1 —®— Proposed Neural-GA

100 150 200 250 300 350 400 450 500
Network Scale / Traffic Load

Figure 5. Energy consumption comparison of heuristic-based, neural-only, ga-only, and proposed
neural—ga optimization approaches under varying IoT network sizes

Table 3. Performance comparison and key observations of optimization approaches

Performance Aspect Heuristic-Based Neural-Only GA-Only Proposed Neural-GA
. . . . Low (25-35%
E C t High Med Med
nergy Consumption ig edium edium reduction)
High (>40¢
Network Lifetime Low Medium Medium . igh ( %o
improvement)
End-to-End Latency High Medium Medium Low (~30% reduction)
QoS Satisfaction Low Medium Medium High and stable
A ili kl High ictive +
daptability to Workload Low Medium Medium ig (pre(?lctlve
Changes adaptive)
Fast but Fast, locall Sl
Convergence Efficiency as .u ast, .oca Y oW, Fast and near-optimal
suboptimal optimal global
Scalability with Network Size Limited Moderate Moderate High scalability
R t D i
obustness ur'l(?er ynamic Low Medium Medium High robustness
Conditions
Overall System Performance Poor Moderate Moderate Superior
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Conclusion

The paper suggested an Al-based hybrid model with the combination of neural computing and genetic
algorithm-based optimization that results in a self-resource-saving and flexible operation of the internet of
things-enabled smart environment. The proposed Neural-GA can be used to answer essential problems
associated with energy usage, latency, and Quality of Service in heterogeneous and dynamic IoT systems by
synergistically integrating context-aware predictive intelligence, and multi-objective evolutionary
optimization. High levels of simulation have shown that the framework is highly effective in low energy
consumption, lower end to end latency and longer end to end network life than traditional heuristic based and
standalone Al techniques without compromising on their QoS. The optimistic closed-loop learning and
optimization mechanism also increases scalability, resiliency, and long-term scalability, which means that the
proposed solution can be used in large-scale applications to the smart cities, smart buildings, and industrial IoT
systems. Future studies will be aimed at the extension of the framework to federated learning implementation
of privacy-preserving intelligence, hardware-aware optimization of embedded systems, and validation on a
real testbed to better show its practical feasibility and impact.
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