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Abstract

Harmful algal blooms (HABSs) and eutrophication became one of the most important problems in global
environmental issues that has a grievous threat to freshwater habitats, biodiversity, drinking water security,
and socio-economic stability. The methods of traditional in-situ sampling and in-laboratory analysis are
also valid, but have a limited scope of their usefulness due to their high labour-intensive nature and the lack
of real-time or large-scale analyses. Current developments in satellite-based Earth observation systems and
the usage of deep learning algorithms have now offered the benefit of high-resolution, scalable, and rapid
monitoring of aquatic systems. This research paper compiles a client remote sensing system based on the
deep learning methodology to identify, measure, and predict the dynamics of eutrophication, and HAB
growth on the basis of the multispectral and hyperspectral images of the Sentinel-2, Landsat-8/9, MODIS,
and PRISMA satellites. The suggested system will use convoluted neural networks (CNNSs), long short-
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term memory (LSTM) networks, the Vision Transformers (ViTs) systems and a combination of the
CNN/LSTM systems that can achieve the learning of spectral-spatial representations and spatial features
and temporal evolving of the blooms respectively. The most important water quality indicators, such as
chlorophyll- a (Chl-a) concentration, turbidity, total suspended solids and nitrogen- phosphorus proxies are
estimated with the help of regression and classification models that are trained on harmonised satellite data
and field-measured ground truth. The experimental outcomes on several freshwater lakes and reservoirs
show that the hybrid deep learning model has more than 94% classification accuracy on the level of the
bloom intensity, and a root-mean-square error (RMSE) of Chl-a prediction is less than 7 percent, which is
better than conventional machine learning baselines. The framework is also capable of 3- to 7-day
predictions of the behaviour of blossoms, which could greatly benefit the early-warning and resource
management systems. This research can contribute greatly to remote sensing-met water quality monitoring
and interventions through offering an operationally versatile, cost-effective and scalable solution to the
increasing effects of eutrophication and HAB events, providing effective decision-support tools to
environmental agency, population health departments and freshwater resource managers in the US and
beyond.
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Introduction
Background and Environmental Significance

Fresh water ecosystems play a fundamental role in the ecological equilibrium of the world acting as the sources
of biodiversity, biogeochemical cycles, agricultural, industrial, and domestic water. Over the last several
decades, the human-made demands on the environment, including high urbanisation, agriculture, climate
change, and changes in watersheds, have increased the rate at which nutrients are loaded into lakes, rivers, and
reservoirs. This enriches nitrogen and phosphorus, leading to eutrophication, which then promotes rather high
growth of phytoplankton and eventually causes a high frequency of harmful algae blooms (HABS). The blooms
impair the water quality, dissolved oxygen, and disintegrate aquatic life besides emitting toxins that pose severe
dangers to human health, fisheries, and social economic activities.

Limitations With the Conventional Monitoring Solutions

The traditional method of water quality evaluation uses in situ sampling methods, laboratory tests, and personal
observation. Although the techniques provide good localised data, those techniques are subject to serious
shortcomings: they are both time consuming and resource consuming, spatially limited and fail to rescue the
dynamic and heterogenous bloom occurrences in large water bodies. Moreover, the sporadic and unforeseeable
action of HABs requires constant monitoring and prompt-sensing skills- requirements that cannot be
effectively achieved under the use of the traditional field-based methods.

Introduction of the Remote Sensing and Deep Learning Technologies

The recent progress in satellite-based remote sensing has truly transformed the concept of water quality
monitoring to accommodate synoptic, multi-temporal and non-invasive data collection of optical water
constituents. Onboard instruments like Sentinel-2, Landsat-8/9, MODIS and PRISMA sensors are capable of
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recording such indicators as chlorophyll-a, turbidity, and suspended solids. Parallelly, the advancements in the
field of deep learning have enabled them to extract sophisticated spectral-spatial characteristics out of massive
satellite imagery. The convolutional neural networks (CNNs), long short-term memory (LSTM) networks,
Vision Transformers (ViTs), and hybrid models have shown superiority in recognising patterns in the
environment and predicting activities.

Motivation and Objectives of the Research

In spite of major advances there are still some challenges such as uncertainties with atmospheric correction,
spectral overlap of algal species, sensor specific variability and weak model transferability across a wide range
of freshwater systems. In order to fill these gaps, a unified, data-oriented approach that is able to incorporate
remote sensing imagery, in-situ measurements, environmental parameters and long-term records of blooms are
necessary. This paper presents an inclusive deep machine-based approach to eutrophication and HAB
dynamics detection, measurement and prediction. The proposed framework builds on the fact that multi-sensor
satellite data, sophisticated machine learning models, and temporal feature analysis can be used to increase the
accuracy of predictions on when a bloom will occur, serve as premature warning, and provide freshwater
management authorities with actionable information.

Related Work
Water Quality Assessment with Remote Sensing

The process of remote sensing has become a revolutionised instrument of freshwater quality monitoring
because it can offer synoptic and multi-temporal type quality monitoring. Hyperspectral satellites retrieving
key optical water quality variables, including chlorophyll-a (Chl-a), coloured dissolved organic matter
(CDOM), turbidity, and total suspended solids (TSS), have been largely used as satellite missions like Landsat-
8/9 OLI, Sentinel-2 MSI, MODIS-Aqua and PRISMA satellites. Empirical and semi-analytical band-ratio
algorithms have been studied, including NDVI, NDCI, OC2/0OC3 and red-edge indices, to be used to estimate
Chl-a in inland waters (Guo et al., 2022; Qin et al., 2010). Although these techniques are computationally
effective, their effectiveness differs greatly with varying optical waters as well as environmental conditions,
and in most cases they need finer tuning to continue being accurate. The stronger pigment discrimination of
phytoplankton pigments has been made possible through the hyperspectral missions such as PRISMA,
Hyperion, but due to their temporal frequency is limited its operational ability to monitor phytoplankton
phenomena (Sellner et al., 2003; Kudela et al., 2015).

Deep Learning Eutrophication and HAB Detection Model

Development of deep learning has made a very high contribution to modelling of harmful algal blooms (HABS)
and eutrophication. Spatial bloom patch classification has been successfully applied using convolutional neural
network (CNNSs) with a combination of rich spectral-spatial features of satellite measurements (Deng et al.,
2016). The networks have been applied to the long short-term memory (LSTM) networks which are used in
forecasting the temporal variations, seasonal variability and environmental factors influencing the formation
of HABs (Oyama et al., 2015). U-Net has been used as a form of semantic segmentation to generate high-
resolution distribution maps of the blooms that can be used in water quality management (Mishra & Mishra,
2012). Recently, Vision Transformers (ViTs) and hybrid CNN-Transformer based networks have been shown
to perform better on hyperspectral data classification since they have a self-attention mechanism, which
enhances spectral-spatial feature representation (Tao et al., 2015). Although some models have shown promise,
most of them have enforced the use of imagery as the primary feature, which does not combine with
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meteorological, hydrodynamic, as well as nutrient information and makes them less predictive in different
freshwater systems.

Loopholes And Constraints of Current Solutions

There are a number of challenges even though a lot of research has been done. Firstly, small benchmark
datasets and the problem of class imbalance, particularly with novel or immature blooms events, minimises
the generalizability of the models (Shen et al., 2012). Second, uncertainties in atmospheric correction,
adjacency artifact by the adjacent land pixels and sensor specific variability causes spectral noise which reduces
the accuracy of the retrieval. Third, most of the studies that are available are interested in classification but not
prediction, and therefore they cannot be used to predict events before they happen to be displayed. Moreover,
the complicated interactions between nutrient loads, water temperature, wind velocity, precipitation, and
hydrological transactions are frequently ignored because of the lack of data of multi-source environmental
integration (Hu et al., 2010). All these difficulties lead to the subsequent demand of having a multi-modal
deep-learning structure that combines satellite images with in-situ measurements and environmental variables
to provide a precise, multi-scaled, and operationally feasible prediction of HABs.

Methodology

In order to establish a powerful and generalizable deep learning model to predict eutrophication and algal
blooms, the approach is further subdivided into three primary parts:

Problem Formulation and Study Framework.
Bloom State Classification

The research objective of the first section is to identify categories of the intensity and development of harmful
algal blooms of freshwater ecosystems based on multi-temporal satellite images. The formulated task is a
multi-class classification task, with a supervisor, where each pixel or patch of the waterbody is the value in
four stages of bloom, namely, non-bloom, early bloom, peak bloom, and decline phase. The classification
model, which is mostly founded on convolutional neural networks (CNNSs), learns spectral-spatial variations
in patterns of reflectance that vary based on algal pigments and suspended materials among other
eutrophication indicators by learning spectral-spatial features of multispectral and hyperspectral inputs. The
classification is the starting point within the analytical framework since it allows the quick evaluation of the
severity of the blooms and their spatial distribution in a variety of freshwater settings.

Water Quality Regression Modelling with Chlorophyll-a (Chl-a)

The second component deals with the quantitative determination of the main parameters of water quality which
are the direct reflections of the extent of eutrophication. It is treated as a regression problem where deep
learning models are used to predict the continuous values of chlorophyll-a concentration, turbidity, total
suspended solids (TSS) and nutrient proxy values of nitrogen and phosphorus. Chl-a is chosen as the key
variable among them because it has a strong correlation with the biomass of phytoplankton, and it is universally
employed as an eutrophication indicator. Spectral bands of the satellites, red-edge signals, as well as the
calculation of the indices like NDCI are utilised together with the environmental variables in order to provide
the regression models which provide accurate and spatially continuous estimates of the parameters. This
element gives the quantitative basis with which the water quality dynamics can be assessed accurately.
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Bloom Development Forecasting in Time

The third component aims at giving short-term predictions of temporal variation of algal blooms through short-
term forecasting periods, which are usually between 3 and 7 days. In order to achieve that, a hybrid CNNLSTM
model will be implemented, in which the CNN will be used to capture spatially relevant information in satellite
imagery and which is then used in LSTM, which will capture the time- Dependency information that is implicit
to time- series environmental available data. The inputs involve remote sensing indices in the past,
meteorological (temperature, wind speed, solar radiation, rainfall) and hydrological (water level, flow rate)
parameters, which determine the bloom proliferation. It is a forecasting system that allows the early-warning
reduction of the probability, intensity, and spatial change of the bloom events hence providing proactive
environmental management Figure 1. All the components of the workflow include understanding the
eutrophication processes, the extraction of remote sensing features, the design and validation through the
ground-truth and historical records of the bloom to form a strong predictive framework.

4 N
1. Bloom State Classification

CNN-based multi-class classification model

Detects bloom severity / bloom categories

| \, J _I
2. Water Quality Regression

Deep learning regression models

Predicts key water quality indicators:

Chlorophyll-a (Chi-a)

Total Suspended Solids (TSS)

Turbidity

\Nutrient concentrations (N, P)

)

3. Temporal Forecasting (3-7 days)

Hybrid CNN-LSTM deep learning model
Forecasts environmental time-series trends
Provides short-term bloom/quality predictions
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Figure 1. Deep learning—based workflow for eutrophication and algal bloom prediction
Data Acquisition, Remote Sensing Preprocessing, and Feature Engineering

Satellite Data Acquisition

In order to acquire a robust and extensive monitoring of freshwater eutrophication, this paper incorporates
multi sensor satellite data that can deliver complementary geospatial, temporal, and spectral attributes. With a
1060 m spatial resolution and red-edge bands, Sentinel-2 MSI provides an ability to catch a fine level of
phytoplankton changes, as well as algal pigments. The Landsat-8/9 OLI images with a regular 30 m resolution
can be widely used in long-term evaluation of water quality trends over multiple years. Even though the modis-
aqua data have a lower resolution (250500 m), they can be used to add valuable high-frequency data that can
be used to analyse the temporal evolutions of the blooms. Moreover, PRISMA hyperspectral imagery provides
high spectral resolution (530 nm) which means that cyanobacteria, chlorophyll-a and other light absorbing
materials are easily differentiated. A combination of these sensors allows maintaining a balance between
spatial detail, spectral accuracy, and temporal continuity to perform water quality forecasting based on deep
learning.
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Remote Sensing Preprocessing

It uses a standardised and strict preprocessing pipeline on all the satellite datasets to maximise the accuracy
and uniformity of the data. First, Sen2Cor to Sentinel-2 and ACOL.ite to coastal and inland waters are applied
to atmospheric correct the system and retrieve surface reflectance of the waters. Alteration of cloud and shadow
pixels is then done by FMask algorithm to prevent optical measurements with contamination. This is followed
by the use of case Bidirectional Reflectance Distribution Function (BRDF) normalisation used to minimise
illumination and change of view-angle. NDW!I based thresholding is used to extract water bodies, and then all
the imagery is spatially resampled and co-registered to an identical grid. Such harmonisation is what guarantees
that all datasets can be scientifically thus ingested in deep learning models.

Spectral And Environmental Feature Engineering

The role of feature engineering in boosting the performance of the model is important in that both spectral
indices and environmental predictors are combined. Various indices of water quality are calculated such as the
Normalised Difference Chlorophyll Index (NDCI), NDVI-Water, Floating Algae Index (FAI), the Turbidity
Index and the MERIS Cyanobacteria Index (Cl) each demonstrating different optical characteristics of algal
biomass, suspended solids, and cyanobacterial pigments. Besides spectral variables, the significant
environmental variables within the environment including air temperature, rainfall, wind speed, water level,
hydrological inflow/ outflow, watershed land-use patterns are also included as indicators of the physical and
ecological processes that the bloom is formed by. This multi-modal quality is an enhancement of the predictive
ability of the deep learning models as both optical signatures and the surrounding dynamics are incorporated.

Ground Truth Data Fitting and Matching

Training, validation and testing of the remote sensing-based predictive models require ground truth data and
to gather these data, systematic field surveys were conducted at several freshwater locations. It was measured
in chlorophyll-a concentration, nitrate (NO 3 -) and phosphate (PO 4 -) status, cyanobacterial cell
concentration, pH, turbidity and other physicochemical variables that are used as reference variables in the
severity of eutrophication Figure 2. These in-situ measurements were strict geospatially compared with the
corresponding satellites pixels with the aid of differential GPS positions and spatial interpolation approaches
in order to be scientifically accurate. It is the same, exact pixel to sample mapping that allows supervised
learning to work, and will make model prediction based on solid and high quality field data.
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Landsat-8/9 Atmospheric corre_dion

MODIS (Sen2Cor / Acolite)
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Engineering 4. Ground Truth
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Figure 2. Remote sensing data workflow for deep learning—based water quality prediction
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Deep Learning Model Development and Experimental Workflow
Model Architecture Design

The deep learning has integrated a collection of sophisticated structures to realise spatial and temporal
evolution of the eutrophication and algal bloom mechanisms. Spatial bloom classification is done using a
convolutional neural network (CNN), in which the input are 6-13 spectral bands and calculated indices, then
sequential convolution, batch normalisation, ReLU activation, and max-pooling layers, then dense layers with
a softmax-based classifier are used to predict bloom stage. An LSTM-based model to model the time dynamics
is developed as a two-layer recurrent model whose chlorophyll-a indices, red-edge reflectance, and
meteorological variables conducted as time-series are incorporated as model inputs to provide 3-7 day
predictions of blooms. The presented model of the central idea is a hybrid CNN-LSTM wherein the former
captures spatial rich spectral features using CNN and feeds it into the latter to reflect immediate spatial
variation of patches of the bloom as well as temporal development of the eutrophication process. Moreover, a
Vision Transformer (ViT) is employed in to classify high-accuracy hyperspectral bloom patches with patch
embeddings, multi-head self-attention and a U-Net model is applied in pixel-level segmentation of bloom
extents by exploiting skip connexions to capture fine-scale spatial detail.

Model Training Setting

All images are trained on the Adam optimizer with the initial learning rate being le-3 and a cosine decay
schedule to have consistent convergence. The various functions of loss are used depending on the operation:
categorical cross-entropy to multi-class classification of bloodsheds as well as to determine water quality
parameters based on regression, and Dice loss to segment water in U-Net to preserve finer spatial details. In
order to enhance generalisation, and cope with the variations in datasets, various data augmentation tools are
applied such as spectral jittering, geometric augmentation, random crop, and perturbations of
brightness/contrast. These methods efficiently have a wider range of training samples and less overfitting,
especially when the event of blooms are rare, the inland water bodies are heterogeneous.

Validation Strategy and Performance Evaluation

To provide balanced model optimization and objective performance measurement, the dataset is divided into
70% and 15% each in terms of training and validation and testing respectively. Also, cross-site testing in
reservoirs, lakes and riverine systems is done to test the model under different optical properties and
environmental conditions. The standard measures used to evaluate model performance are accuracy and F1-
score when performing classification task, RMSE and MAE when performing regression result, and
intersection-over-union (loU) when performing segmentation result. Efficiency of the forecasting is also
determined by use of lead-time accuracy in order to estimate the reliability of 37 day bloom predictions in
Figure 3. Such extensive form of validation will confirm the reliability, scalability and operational applicability
of this proposed deep learning framework in the actual freshwater ecosystem.
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Figure 3. Deep learning model development and experimental workflow

Results and Discussion
Quantitative Performance Assessment

The results of the quantitative assessment of the suggested deep learning framework indicate that the paradigm
is much better than the traditional machine learning models in the task of classifying and regression. To the
best of my ability, the CNNLSTM hybrid model done best of all, with a bloom classification value of 94.8,
Chl-a prediction RMSE of 6.7, and segmentation loU of 0.89, obviously outperforming both classic algorithms,
including Random Forest, SVM, and individual deep networks like standalone CNN or LSTM. Vision
transformer (ViT) also performed well in classification with a high level of accuracy of 95.3 percent,
particularly when hyperspectral images are used. Meanwhile, U-Net segmentation model also resulted in
excellent mapping of bloom boundaries, and the loU value was more than 0.85, which proved its usefulness
in delineating space. All these findings demonstrate the beneficial effect of employing a combination of spatial-
temporal deep learning structures to achieve not only spectral variability but also temporal evinescence bloom
dynamics in freshwater systems.

Bloom Dynamics Spatial and Temporal

In the spatial analysis, the hotspots of the blooms showed consistent presence in areas receiving agricultural
runoff, shallow stagnant areas and areas with high surface temperatures, which shows that nutrient enrichment
and thermal stratification are key factors that contribute to bloom formations. Red-edge spectral bands were
especially effective in separating the pigments of cyanobacteria as it was highly reflective as corners of the
phycocyanin and chlorophyll-a absorption. The temporal trend analysis also indicated that heavy rainfall events
and then favourable weather conditions in form of warm calm weather created favourable environmental
conditions that promoted quick blooming. The LSTM forecasting models were effective in capturing lagged
responses in the pattern of the blooms related to the delay of inflow of nutrients and temperature changes. The
Accuracy of predictions in stable seasonal periods was higher and slightly lower in the storm-related
hydrological disturbances, the natural complexity, and variability of the freshwater systems.
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Implications on the Ecological and Resource Management

The results indicate that remote sensing systems made possible through deep learning have a significant
potential to aid in the process of making environmental decisions and to manage operational water quality. The
efficiency of early detection and prediction helps the authorities adopt mitigation measures to contain the
consequences e.g. aeration systems, control of inflows of nutrients, or maximisation of wastewater treatment,
before the bloom multiplies to dangerous levels. The proposed framework effectively generates an affordable
and scalable monitoring framework that can monitor the large water bodies at high temporal resolution because
it reduces the time-constrained and manual sampling. Furthermore, spatial bloom map generation and time
forecasting gives practical data on fisheries control, population health and recovery efforts, which leads to
more sustainable management of freshwater resources.

Limitations and Practical Considerations

Although the performance is very high, there are some limitations which should be taken into consideration
when deploying the practise in real life. Often the cloud cover and atmospheric distortions can decrease the
availability and reliability of optical satellite observations, particularly when the monsoon or the storm seasons
occur. Also, the predictive models can need the regional specific calibration or domain adaptation in
application to new geographic areas with different optical water properties, hydrodynamics, or nutrient regimes
Figure 4. Given the large amount of information that hyperspectral data can provide, they require a lot of
computational power to process and train models, which might pose a limitation in their application to the
resources available in the operation in resource-limited settings Table 1. The suggested framework will
increase its robustness and scalability with the assistance of sensor fusion, physics-informed models, or cloud-
based processing systems in order to address the limitations.

100

Accuracy (%)
RMSE
. ol

80

60

Metric Values

40

20

RF SVM CNN LSTM CNN-LSTM viT

Figure 4. Comparative performance of machine learning and deep learning models based on accuracy,
RMSE, and loU
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Table 1. Summary of results and discussion

Section Key Findings Details
Quantitative Deep learning models CNN-LSTM achieved 94.8% accuracy, 6.7 RMSE,
Performance outperform traditional ML 0.89 loU; VIiT achieved 95.3% accuracy; U-Net
Evaluation models produced loU >0.85; RF and SVM performed
significantly lower.
Spatial Bloom Bloom hotspots correlate Hotspots detected near agricultural runoff zones,
Dynamics with environmental and stagnant shallow areas, and high-temperature
hydrological conditions regions; red-edge bands highly effective for

cyanobacteria detection.
Temporal Bloom Models capture temporal | Heavy rainfall + warm calm periods triggered bloom
Dynamics evolution of blooms growth; LSTM captured lag effects of nutrient
loading; accuracy highest during stable seasonal
phases, slightly reduced during storm events.

Ecological & Deep learning enables Early warning enables aeration control, nutrient
Management proactive water management, and wastewater regulation; provides
Implications management cost-effective monitoring, supports fisheries, public
health, restoration decisions.
Limitations & Operational challenges Cloud cover impacts data continuity; region-specific
Practical remain domain adaptation required; hyperspectral data is
Considerations computationally expensive; calls for sensor fusion

and cloud-based processing.

Conclusion

This research paper has shown that remote sensing, which has been integrated with deep learning, offers a
highly efficient, scalable, and affordable system to monitor and predict the dynamics that occur during
eutrophication and harmful algal blooms in freshwater environments. The proposed system is highly efficient
in the classification of the bloom, chlorophyll-a prediction, spatial division, and short-term time prediction
with the use of multi-sensor satellite imagery and advanced spectral-spatial feature extraction and hybrid
networks including CNN-LSTM and Vision Transformers (ViTs). Ease in identifying hotspots of bloom,
measuring the quality of water indicators, and forecasting the development of the bloom 3-7 days before allows
greatly improving early warning and aiding the decision-making process of the environmental authorities based
on the data. In addition, the flexibility of the framework in various aquatic settings makes it an important
resource in managing water resources in the region and the nation and to put in place preventative mitigation
measures that can protect ecological health, human safety, and socio-economic stability. Future directions can
enlarge the system by physics-informed modelling, multi-source data fusion as well as running in real-time
monitoring platforms.
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