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Abstract  

Harmful algal blooms (HABs) and eutrophication became one of the most important problems in global 

environmental issues that has a grievous threat to freshwater habitats, biodiversity, drinking water security, 

and socio-economic stability. The methods of traditional in-situ sampling and in-laboratory analysis are 

also valid, but have a limited scope of their usefulness due to their high labour-intensive nature and the lack 

of real-time or large-scale analyses. Current developments in satellite-based Earth observation systems and 

the usage of deep learning algorithms have now offered the benefit of high-resolution, scalable, and rapid 

monitoring of aquatic systems. This research paper compiles a client remote sensing system based on the 

deep learning methodology to identify, measure, and predict the dynamics of eutrophication, and HAB 

growth on the basis of the multispectral and hyperspectral images of the Sentinel-2, Landsat-8/9, MODIS, 

and PRISMA satellites. The suggested system will use convoluted neural networks (CNNs), long short-
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term memory (LSTM) networks, the Vision Transformers (ViTs) systems and a combination of the 

CNN/LSTM systems that can achieve the learning of spectral-spatial representations and spatial features 

and temporal evolving of the blooms respectively. The most important water quality indicators, such as 

chlorophyll- a (Chl-a) concentration, turbidity, total suspended solids and nitrogen- phosphorus proxies are 

estimated with the help of regression and classification models that are trained on harmonised satellite data 

and field-measured ground truth. The experimental outcomes on several freshwater lakes and reservoirs 

show that the hybrid deep learning model has more than 94% classification accuracy on the level of the 

bloom intensity, and a root-mean-square error (RMSE) of Chl-a prediction is less than 7 percent, which is 

better than conventional machine learning baselines. The framework is also capable of 3- to 7-day 

predictions of the behaviour of blossoms, which could greatly benefit the early-warning and resource 

management systems. This research can contribute greatly to remote sensing-met water quality monitoring 

and interventions through offering an operationally versatile, cost-effective and scalable solution to the 

increasing effects of eutrophication and HAB events, providing effective decision-support tools to 

environmental agency, population health departments and freshwater resource managers in the US and 

beyond. 
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Introduction 

Background and Environmental Significance 

Fresh water ecosystems play a fundamental role in the ecological equilibrium of the world acting as the sources 

of biodiversity, biogeochemical cycles, agricultural, industrial, and domestic water. Over the last several 

decades, the human-made demands on the environment, including high urbanisation, agriculture, climate 

change, and changes in watersheds, have increased the rate at which nutrients are loaded into lakes, rivers, and 

reservoirs. This enriches nitrogen and phosphorus, leading to eutrophication, which then promotes rather high 

growth of phytoplankton and eventually causes a high frequency of harmful algae blooms (HABs). The blooms 

impair the water quality, dissolved oxygen, and disintegrate aquatic life besides emitting toxins that pose severe 

dangers to human health, fisheries, and social economic activities. 

Limitations With the Conventional Monitoring Solutions 

The traditional method of water quality evaluation uses in situ sampling methods, laboratory tests, and personal 

observation. Although the techniques provide good localised data, those techniques are subject to serious 

shortcomings: they are both time consuming and resource consuming, spatially limited and fail to rescue the 

dynamic and heterogenous bloom occurrences in large water bodies. Moreover, the sporadic and unforeseeable 

action of HABs requires constant monitoring and prompt-sensing skills- requirements that cannot be 

effectively achieved under the use of the traditional field-based methods. 

Introduction of the Remote Sensing and Deep Learning Technologies 

The recent progress in satellite-based remote sensing has truly transformed the concept of water quality 

monitoring to accommodate synoptic, multi-temporal and non-invasive data collection of optical water 

constituents. Onboard instruments like Sentinel-2, Landsat-8/9, MODIS and PRISMA sensors are capable of 
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recording such indicators as chlorophyll-a, turbidity, and suspended solids. Parallelly, the advancements in the 

field of deep learning have enabled them to extract sophisticated spectral-spatial characteristics out of massive 

satellite imagery. The convolutional neural networks (CNNs), long short-term memory (LSTM) networks, 

Vision Transformers (ViTs), and hybrid models have shown superiority in recognising patterns in the 

environment and predicting activities. 

Motivation and Objectives of the Research 

In spite of major advances there are still some challenges such as uncertainties with atmospheric correction, 

spectral overlap of algal species, sensor specific variability and weak model transferability across a wide range 

of freshwater systems. In order to fill these gaps, a unified, data-oriented approach that is able to incorporate 

remote sensing imagery, in-situ measurements, environmental parameters and long-term records of blooms are 

necessary. This paper presents an inclusive deep machine-based approach to eutrophication and HAB 

dynamics detection, measurement and prediction. The proposed framework builds on the fact that multi-sensor 

satellite data, sophisticated machine learning models, and temporal feature analysis can be used to increase the 

accuracy of predictions on when a bloom will occur, serve as premature warning, and provide freshwater 

management authorities with actionable information. 

Related Work 

Water Quality Assessment with Remote Sensing 

The process of remote sensing has become a revolutionised instrument of freshwater quality monitoring 

because it can offer synoptic and multi-temporal type quality monitoring. Hyperspectral satellites retrieving 

key optical water quality variables, including chlorophyll-a (Chl-a), coloured dissolved organic matter 

(CDOM), turbidity, and total suspended solids (TSS), have been largely used as satellite missions like Landsat-

8/9 OLI, Sentinel-2 MSI, MODIS-Aqua and PRISMA satellites. Empirical and semi-analytical band-ratio 

algorithms have been studied, including NDVI, NDCI, OC2/OC3 and red-edge indices, to be used to estimate 

Chl-a in inland waters (Guo et al., 2022; Qin et al., 2010). Although these techniques are computationally 

effective, their effectiveness differs greatly with varying optical waters as well as environmental conditions, 

and in most cases they need finer tuning to continue being accurate. The stronger pigment discrimination of 

phytoplankton pigments has been made possible through the hyperspectral missions such as PRISMA, 

Hyperion, but due to their temporal frequency is limited its operational ability to monitor phytoplankton 

phenomena (Sellner et al., 2003; Kudela et al., 2015). 

Deep Learning Eutrophication and HAB Detection Model 

Development of deep learning has made a very high contribution to modelling of harmful algal blooms (HABs) 

and eutrophication. Spatial bloom patch classification has been successfully applied using convolutional neural 

network (CNNs) with a combination of rich spectral-spatial features of satellite measurements (Deng et al., 

2016). The networks have been applied to the long short-term memory (LSTM) networks which are used in 

forecasting the temporal variations, seasonal variability and environmental factors influencing the formation 

of HABs (Oyama et al., 2015). U-Net has been used as a form of semantic segmentation to generate high-

resolution distribution maps of the blooms that can be used in water quality management (Mishra & Mishra, 

2012). Recently, Vision Transformers (ViTs) and hybrid CNN-Transformer based networks have been shown 

to perform better on hyperspectral data classification since they have a self-attention mechanism, which 

enhances spectral-spatial feature representation (Tao et al., 2015). Although some models have shown promise, 

most of them have enforced the use of imagery as the primary feature, which does not combine with 
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meteorological, hydrodynamic, as well as nutrient information and makes them less predictive in different 

freshwater systems. 

Loopholes And Constraints of Current Solutions 

There are a number of challenges even though a lot of research has been done. Firstly, small benchmark 

datasets and the problem of class imbalance, particularly with novel or immature blooms events, minimises 

the generalizability of the models (Shen et al., 2012). Second, uncertainties in atmospheric correction, 

adjacency artifact by the adjacent land pixels and sensor specific variability causes spectral noise which reduces 

the accuracy of the retrieval. Third, most of the studies that are available are interested in classification but not 

prediction, and therefore they cannot be used to predict events before they happen to be displayed. Moreover, 

the complicated interactions between nutrient loads, water temperature, wind velocity, precipitation, and 

hydrological transactions are frequently ignored because of the lack of data of multi-source environmental 

integration (Hu et al., 2010). All these difficulties lead to the subsequent demand of having a multi-modal 

deep-learning structure that combines satellite images with in-situ measurements and environmental variables 

to provide a precise, multi-scaled, and operationally feasible prediction of HABs. 

Methodology 

In order to establish a powerful and generalizable deep learning model to predict eutrophication and algal 

blooms, the approach is further subdivided into three primary parts: 

Problem Formulation and Study Framework. 

Bloom State Classification 

The research objective of the first section is to identify categories of the intensity and development of harmful 

algal blooms of freshwater ecosystems based on multi-temporal satellite images. The formulated task is a 

multi-class classification task, with a supervisor, where each pixel or patch of the waterbody is the value in 

four stages of bloom, namely, non-bloom, early bloom, peak bloom, and decline phase. The classification 

model, which is mostly founded on convolutional neural networks (CNNs), learns spectral-spatial variations 

in patterns of reflectance that vary based on algal pigments and suspended materials among other 

eutrophication indicators by learning spectral-spatial features of multispectral and hyperspectral inputs. The 

classification is the starting point within the analytical framework since it allows the quick evaluation of the 

severity of the blooms and their spatial distribution in a variety of freshwater settings. 

Water Quality Regression Modelling with Chlorophyll-a (Chl-a) 

The second component deals with the quantitative determination of the main parameters of water quality which 

are the direct reflections of the extent of eutrophication. It is treated as a regression problem where deep 

learning models are used to predict the continuous values of chlorophyll-a concentration, turbidity, total 

suspended solids (TSS) and nutrient proxy values of nitrogen and phosphorus. Chl-a is chosen as the key 

variable among them because it has a strong correlation with the biomass of phytoplankton, and it is universally 

employed as an eutrophication indicator. Spectral bands of the satellites, red-edge signals, as well as the 

calculation of the indices like NDCI are utilised together with the environmental variables in order to provide 

the regression models which provide accurate and spatially continuous estimates of the parameters. This 

element gives the quantitative basis with which the water quality dynamics can be assessed accurately. 
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Bloom Development Forecasting in Time 

The third component aims at giving short-term predictions of temporal variation of algal blooms through short-

term forecasting periods, which are usually between 3 and 7 days. In order to achieve that, a hybrid CNNLSTM 

model will be implemented, in which the CNN will be used to capture spatially relevant information in satellite 

imagery and which is then used in LSTM, which will capture the time- Dependency information that is implicit 

to time- series environmental available data. The inputs involve remote sensing indices in the past, 

meteorological (temperature, wind speed, solar radiation, rainfall) and hydrological (water level, flow rate) 

parameters, which determine the bloom proliferation. It is a forecasting system that allows the early-warning 

reduction of the probability, intensity, and spatial change of the bloom events hence providing proactive 

environmental management Figure 1. All the components of the workflow include understanding the 

eutrophication processes, the extraction of remote sensing features, the design and validation through the 

ground-truth and historical records of the bloom to form a strong predictive framework. 

 

Figure 1. Deep learning–based workflow for eutrophication and algal bloom prediction 

Data Acquisition, Remote Sensing Preprocessing, and Feature Engineering 

Satellite Data Acquisition 

In order to acquire a robust and extensive monitoring of freshwater eutrophication, this paper incorporates 

multi sensor satellite data that can deliver complementary geospatial, temporal, and spectral attributes. With a 

1060 m spatial resolution and red-edge bands, Sentinel-2 MSI provides an ability to catch a fine level of 

phytoplankton changes, as well as algal pigments. The Landsat-8/9 OLI images with a regular 30 m resolution 

can be widely used in long-term evaluation of water quality trends over multiple years. Even though the modis-

aqua data have a lower resolution (250500 m), they can be used to add valuable high-frequency data that can 

be used to analyse the temporal evolutions of the blooms. Moreover, PRISMA hyperspectral imagery provides 

high spectral resolution (530 nm) which means that cyanobacteria, chlorophyll-a and other light absorbing 

materials are easily differentiated. A combination of these sensors allows maintaining a balance between 

spatial detail, spectral accuracy, and temporal continuity to perform water quality forecasting based on deep 

learning. 

 

1. Bloom State Classification

CNN-based multi-class classification model

Detects bloom severity / bloom categories

2. Water Quality Regression

Deep learning regression models

Predicts key water quality indicators:

Chlorophyll-a (Chi-a)

Total Suspended Solids (TSS)

Turbidity

Nutrient concentrations (N, P)

3. Temporal Forecasting (3–7 days)

Hybrid CNN–LSTM deep learning model

Forecasts environmental time-series trends

Provides short-term bloom/quality predictions
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Remote Sensing Preprocessing 

It uses a standardised and strict preprocessing pipeline on all the satellite datasets to maximise the accuracy 

and uniformity of the data. First, Sen2Cor to Sentinel-2 and ACOLite to coastal and inland waters are applied 

to atmospheric correct the system and retrieve surface reflectance of the waters. Alteration of cloud and shadow 

pixels is then done by FMask algorithm to prevent optical measurements with contamination. This is followed 

by the use of case Bidirectional Reflectance Distribution Function (BRDF) normalisation used to minimise 

illumination and change of view-angle. NDWI based thresholding is used to extract water bodies, and then all 

the imagery is spatially resampled and co-registered to an identical grid. Such harmonisation is what guarantees 

that all datasets can be scientifically thus ingested in deep learning models. 

Spectral And Environmental Feature Engineering 

The role of feature engineering in boosting the performance of the model is important in that both spectral 

indices and environmental predictors are combined. Various indices of water quality are calculated such as the 

Normalised Difference Chlorophyll Index (NDCI), NDVI-Water, Floating Algae Index (FAI), the Turbidity 

Index and the MERIS Cyanobacteria Index (CI) each demonstrating different optical characteristics of algal 

biomass, suspended solids, and cyanobacterial pigments. Besides spectral variables, the significant 

environmental variables within the environment including air temperature, rainfall, wind speed, water level, 

hydrological inflow/ outflow, watershed land-use patterns are also included as indicators of the physical and 

ecological processes that the bloom is formed by. This multi-modal quality is an enhancement of the predictive 

ability of the deep learning models as both optical signatures and the surrounding dynamics are incorporated. 

Ground Truth Data Fitting and Matching 

Training, validation and testing of the remote sensing-based predictive models require ground truth data and 

to gather these data, systematic field surveys were conducted at several freshwater locations. It was measured 

in chlorophyll-a concentration, nitrate (NO 3 -) and phosphate (PO 4 -) status, cyanobacterial cell 

concentration, pH, turbidity and other physicochemical variables that are used as reference variables in the 

severity of eutrophication Figure 2. These in-situ measurements were strict geospatially compared with the 

corresponding satellites pixels with the aid of differential GPS positions and spatial interpolation approaches 

in order to be scientifically accurate. It is the same, exact pixel to sample mapping that allows supervised 

learning to work, and will make model prediction based on solid and high quality field data. 

 

Figure 2. Remote sensing data workflow for deep learning–based water quality prediction 

1. Satellite Data Acquisition

Sentinel-1/2

Landsat-8/9

MODIS

PRISMA hyperspectral 
imagery

2. Remote Sensing 
Preprocessing

Atmospheric correction 
(Sen2Cor / Acolite)

Cloud masking (FMask)

BRDF normalization

3. Spectral Feature 
Engineering

NDCI (Normalized 
Difference Chlorophyll 

Index)

NDVI-Water

FAI (Floating Algae Index)

CI (Cyanobacteria Index)

Turbidity index

Integration of environmental 
variables

4. Ground Truth 
Integration

Chlorophyll-a (Chl-a)

Total Suspended Solids 
(TSS)

Nutrients (N, P)

pH

Cyanobacteria density

Pixel-to-sample alignment
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Deep Learning Model Development and Experimental Workflow 

Model Architecture Design 

The deep learning has integrated a collection of sophisticated structures to realise spatial and temporal 

evolution of the eutrophication and algal bloom mechanisms. Spatial bloom classification is done using a 

convolutional neural network (CNN), in which the input are 6-13 spectral bands and calculated indices, then 

sequential convolution, batch normalisation, ReLU activation, and max-pooling layers, then dense layers with 

a softmax-based classifier are used to predict bloom stage. An LSTM-based model to model the time dynamics 

is developed as a two-layer recurrent model whose chlorophyll-a indices, red-edge reflectance, and 

meteorological variables conducted as time-series are incorporated as model inputs to provide 3-7 day 

predictions of blooms. The presented model of the central idea is a hybrid CNN-LSTM wherein the former 

captures spatial rich spectral features using CNN and feeds it into the latter to reflect immediate spatial 

variation of patches of the bloom as well as temporal development of the eutrophication process. Moreover, a 

Vision Transformer (ViT) is employed in to classify high-accuracy hyperspectral bloom patches with patch 

embeddings, multi-head self-attention and a U-Net model is applied in pixel-level segmentation of bloom 

extents by exploiting skip connexions to capture fine-scale spatial detail. 

Model Training Setting 

All images are trained on the Adam optimizer with the initial learning rate being 1e-3 and a cosine decay 

schedule to have consistent convergence. The various functions of loss are used depending on the operation: 

categorical cross-entropy to multi-class classification of bloodsheds as well as to determine water quality 

parameters based on regression, and Dice loss to segment water in U-Net to preserve finer spatial details. In 

order to enhance generalisation, and cope with the variations in datasets, various data augmentation tools are 

applied such as spectral jittering, geometric augmentation, random crop, and perturbations of 

brightness/contrast. These methods efficiently have a wider range of training samples and less overfitting, 

especially when the event of blooms are rare, the inland water bodies are heterogeneous. 

Validation Strategy and Performance Evaluation 

To provide balanced model optimization and objective performance measurement, the dataset is divided into 

70% and 15% each in terms of training and validation and testing respectively. Also, cross-site testing in 

reservoirs, lakes and riverine systems is done to test the model under different optical properties and 

environmental conditions. The standard measures used to evaluate model performance are accuracy and F1-

score when performing classification task, RMSE and MAE when performing regression result, and 

intersection-over-union (IoU) when performing segmentation result. Efficiency of the forecasting is also 

determined by use of lead-time accuracy in order to estimate the reliability of 37 day bloom predictions in 

Figure 3. Such extensive form of validation will confirm the reliability, scalability and operational applicability 

of this proposed deep learning framework in the actual freshwater ecosystem. 



Natural and Engineering Sciences        851 
 

 

Figure 3. Deep learning model development and experimental workflow 

Results and Discussion 

Quantitative Performance Assessment 

The results of the quantitative assessment of the suggested deep learning framework indicate that the paradigm 

is much better than the traditional machine learning models in the task of classifying and regression. To the 

best of my ability, the CNNLSTM hybrid model done best of all, with a bloom classification value of 94.8, 

Chl-a prediction RMSE of 6.7, and segmentation IoU of 0.89, obviously outperforming both classic algorithms, 

including Random Forest, SVM, and individual deep networks like standalone CNN or LSTM. Vision 

transformer (ViT) also performed well in classification with a high level of accuracy of 95.3 percent, 

particularly when hyperspectral images are used. Meanwhile, U-Net segmentation model also resulted in 

excellent mapping of bloom boundaries, and the IoU value was more than 0.85, which proved its usefulness 

in delineating space. All these findings demonstrate the beneficial effect of employing a combination of spatial-

temporal deep learning structures to achieve not only spectral variability but also temporal evinescence bloom 

dynamics in freshwater systems. 

Bloom Dynamics Spatial and Temporal 

In the spatial analysis, the hotspots of the blooms showed consistent presence in areas receiving agricultural 

runoff, shallow stagnant areas and areas with high surface temperatures, which shows that nutrient enrichment 

and thermal stratification are key factors that contribute to bloom formations. Red-edge spectral bands were 

especially effective in separating the pigments of cyanobacteria as it was highly reflective as corners of the 

phycocyanin and chlorophyll-a absorption. The temporal trend analysis also indicated that heavy rainfall events 

and then favourable weather conditions in form of warm calm weather created favourable environmental 

conditions that promoted quick blooming. The LSTM forecasting models were effective in capturing lagged 

responses in the pattern of the blooms related to the delay of inflow of nutrients and temperature changes. The 

Accuracy of predictions in stable seasonal periods was higher and slightly lower in the storm-related 

hydrological disturbances, the natural complexity, and variability of the freshwater systems. 

 

3. Validation Strategy & 
Performance Metrics

Dataset Split: 70% Train | 
15% Validation | 15% Test

Cross-Site Validation: Lakes 
and reservoirs

Evaluation Metrics:

Accuracy

F1 score

RMSE

MAE

IoU

2. Model Training Configuration

Optimizer: Adam (Learning Rate = 1e-3 
using cosine decay)

Loss Functions: Cross-entropy, RMSE, 
Dice loss

Data Augmentation:

Spectral jitter

Geometric transformations

Random cropping

1. Model Architecture 
Design

CNN → Spatial bloom 
classification

LSTM → Temporal modeling

CNN–LSTM → Hybrid 
spatio–temporal modeling

ViT → Hyperspectral 
classification

U-Net → Bloom segmentation
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Implications on the Ecological and Resource Management 

The results indicate that remote sensing systems made possible through deep learning have a significant 

potential to aid in the process of making environmental decisions and to manage operational water quality. The 

efficiency of early detection and prediction helps the authorities adopt mitigation measures to contain the 

consequences e.g. aeration systems, control of inflows of nutrients, or maximisation of wastewater treatment, 

before the bloom multiplies to dangerous levels. The proposed framework effectively generates an affordable 

and scalable monitoring framework that can monitor the large water bodies at high temporal resolution because 

it reduces the time-constrained and manual sampling. Furthermore, spatial bloom map generation and time 

forecasting gives practical data on fisheries control, population health and recovery efforts, which leads to 

more sustainable management of freshwater resources. 

Limitations and Practical Considerations 

Although the performance is very high, there are some limitations which should be taken into consideration 

when deploying the practise in real life. Often the cloud cover and atmospheric distortions can decrease the 

availability and reliability of optical satellite observations, particularly when the monsoon or the storm seasons 

occur. Also, the predictive models can need the regional specific calibration or domain adaptation in 

application to new geographic areas with different optical water properties, hydrodynamics, or nutrient regimes 

Figure 4. Given the large amount of information that hyperspectral data can provide, they require a lot of 

computational power to process and train models, which might pose a limitation in their application to the 

resources available in the operation in resource-limited settings Table 1. The suggested framework will 

increase its robustness and scalability with the assistance of sensor fusion, physics-informed models, or cloud-

based processing systems in order to address the limitations. 

 

Figure 4. Comparative performance of machine learning and deep learning models based on accuracy, 

RMSE, and IoU 
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Table 1. Summary of results and discussion 

Section Key Findings Details 

Quantitative 

Performance 

Evaluation 

Deep learning models 

outperform traditional ML 

models 

CNN–LSTM achieved 94.8% accuracy, 6.7 RMSE, 

0.89 IoU; ViT achieved 95.3% accuracy; U-Net 

produced IoU >0.85; RF and SVM performed 

significantly lower. 

Spatial Bloom 

Dynamics 

Bloom hotspots correlate 

with environmental and 

hydrological conditions 

Hotspots detected near agricultural runoff zones, 

stagnant shallow areas, and high-temperature 

regions; red-edge bands highly effective for 

cyanobacteria detection. 

Temporal Bloom 

Dynamics 

Models capture temporal 

evolution of blooms 

Heavy rainfall + warm calm periods triggered bloom 

growth; LSTM captured lag effects of nutrient 

loading; accuracy highest during stable seasonal 

phases, slightly reduced during storm events. 

Ecological & 

Management 

Implications 

Deep learning enables 

proactive water 

management 

Early warning enables aeration control, nutrient 

management, and wastewater regulation; provides 

cost-effective monitoring, supports fisheries, public 

health, restoration decisions. 

Limitations & 

Practical 

Considerations 

Operational challenges 

remain 

Cloud cover impacts data continuity; region-specific 

domain adaptation required; hyperspectral data is 

computationally expensive; calls for sensor fusion 

and cloud-based processing. 

Conclusion 

This research paper has shown that remote sensing, which has been integrated with deep learning, offers a 

highly efficient, scalable, and affordable system to monitor and predict the dynamics that occur during 

eutrophication and harmful algal blooms in freshwater environments. The proposed system is highly efficient 

in the classification of the bloom, chlorophyll-a prediction, spatial division, and short-term time prediction 

with the use of multi-sensor satellite imagery and advanced spectral-spatial feature extraction and hybrid 

networks including CNN-LSTM and Vision Transformers (ViTs). Ease in identifying hotspots of bloom, 

measuring the quality of water indicators, and forecasting the development of the bloom 3-7 days before allows 

greatly improving early warning and aiding the decision-making process of the environmental authorities based 

on the data. In addition, the flexibility of the framework in various aquatic settings makes it an important 

resource in managing water resources in the region and the nation and to put in place preventative mitigation 

measures that can protect ecological health, human safety, and socio-economic stability. Future directions can 

enlarge the system by physics-informed modelling, multi-source data fusion as well as running in real-time 

monitoring platforms. 
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