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Abstract  

Even though riverine ecosystems constitute the basis of ecological stability, biodiversity conservation, and 

provision of critical ecosystem services, there is a growing threat concerning the levels of aquatic pollution 

caused by industrial effluents, agricultural runoff, municipal waste discharge, and overt urban growth and 

expansion. Manual sampling and lab analysis based traditional methods of water quality monitoring are 

commonly slow, spatially limited, and incapable of defining the great dynamism of pollution signatures 

within flowing river systems. To overcome these shortcomings, this paper suggests a holistic AI integrated 
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remote sensing system based on IoT to operate in real-time, high-resolution, spatio-temporal measures of 

aquatic pollution and ecosystem well-being from riverine settings. The framework combines these elements 

in a low-power wireless sensor network (WSNs) of continuous in-situ monitoring, 

multispectral/hyperspectral satellite data (such as Sentinel-2 and Landsat-8) on a platform, and unmanned 

aerial vehicle (UAV)-mounted optical and thermal already holds useful information to create a multi-

source/ multi-scale environmental dataset. The feature extraction is being performed using the advanced 

artificial intelligence model such as deep neural networks (DNN), long short-term memory (LSTM) 

networks, gradient boosting algorithms, and spatio-temporal kriging; the predictive models, anomaly 

detection, and estimation of key water quality indicators such as pH, dissolved oxygen (DO), turbidity, total 

dissolved solids (TDS), nitrate concentration, and chlorophyll-a can be done. The unified system also 

includes analytics in the clouds and geospatial decision support tools to create pollution heatmaps, predict 

cases of contamination, and an analysis of the index of ecosystem health. As is evident in experimental 

validation with real world field data, the proposed framework is far more effective than the traditional 

method of monitoring in terms of prediction accuracy, latency, spatial coverage and also allows the ability 

to issue early-warnings. In general, the created AI-IoT-enabled remote sensing architecture provides an 

efficient, intelligent, and scalable framework of managing sustainable river basin, environmental policy 

control, and data-driven ecosystem security in response to emerging pressures caused by humans. 
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Introduction 

Significance of Riverine Ecosystems and New Environmental Issues and Challenges 

Riverine ecosystems are also important freshwater facilities that sustain ecological balance, biodiversity and 

agricultural output and human livelihood. They are natural pathways of nutrient cycling, connectivity of 

habitats as well as hydrological control with profound effect on the stability of climate in the region and 

economic growth. Nevertheless, the emergence of industrialization, uncontrollable urbanisation, agricultural 

intensification, and the disposal of wastes have damaged the ecological integrity of the rivers. Water quality is 

negatively affected by heavy metals, pesticides, nitrates, microplastics and untreated sewage, which cause 

eutrophication, losses of habitats and water-borne diseases. This mounting environmental pressure places an 

urgent call on the need to have innovative, scalable and real-time monitoring tools that are able to record the 

complicated spatio-temporal processes of pollution in riverine systems. 

Shortcomings of Traditional Water Quality Monitoring Systems 

Conventional techniques of monitoring are mainly based on manual sampling, laboratory testing and periodic 

field surveys. Despite the fact that these methods offer a precise point-based measurements, they have a number 

of limitations such as intensity of labour, slow speed of processing, low spatial range, and detection of abrupt 

pollution occurrences. Also, rivers do not demonstrate a very stable hydrological behaviour as the pattern of 

pollutant dispersion can quickly vary because of the changes in flow, climatic conditions, and human activities. 

Therefore, there is no proper monitoring framework to engage in the perpetual surveillance or support decision 

make of environmental governance-based agencies in timely manner. 
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Smart Water Monitoring Active in Advancements in IoT, Remote Sensing, and Artificial Intelligence 

The recent changes in technology in terms of the Internet of Things (IoT), unmanned aerial vehicles (UAVs), 

remote sensing by satellites, and artificial intelligence (AI) have presented groundbreaking opportunities in 

environmental surveillance. The IoT sensor networks can be used to provide real-time measurements of high-

frequency water quality parameters and satellites, such as Sentinel-2 and Landsat-8 can provide extensive 

spatial coverage and multispectral information about the ecological situation. Aerial imaging on UAV 

increases the spatial granularity, particularly on local hotspots. At the same time, the data analytics of an AI 

type, such as machine learning, deep learning, and spatio-temporal modeling, help provide intelligent data 

fusion, anomaly detection, trend forecasting, and automated water quality and ecosystem health assessment. 

Motivation and Goals of the Proposed AI-close IoT Integrated Framework 

In order to address the inadequacies of the traditional monitoring systems and tap into the possibilities of the 

new technologies, this paper suggests an integrated AI IoT based remote sensing system to conduct real-time 

spatio-temporal evaluation of aquatic pollution in riverine systems. The ultimate goal is to build a high-power, 

scalable, and flexible design, which integrates in-situ sensor of IoT, UAV-based image, multispectral satellite, 

and enhanced AI models to create a holistic environmental surveillance system. Particularly, the study will 

seek to: (i) design a multisource sensing infrastructure to monitor river continuously; (ii) establish hybrid 

machine learning and deep learning models to accurately predict water quality indicators; (iii) integrate spatio-

temporal kriging which will be used to analyze pollution dispersions; and (iv) provide actionable insights to 

smart environmental governance and sustainable control of river basin. 

Literature Review 

Aquatic Monitoring Based on IoT 

Introduction of Internet of Things (IoT) technologies has facilitated the monitoring of aquatic environment to 

a very large extent as it provides ability of continuous data collection on low power consumption and scalability 

of the riverine systems. The pH, dissolved oxygen (DO), turbidity, electrical conductivity and temperature 

sensors in wireless sensor networks (WSNs) have proven to be quite promising in terms of real-time, 

autonomous collection of data (Lei et al., 2024; Yepremyan et al., 2025). Although these advantages exist, 

sensor drift, biofouling, calibration variability, and small spatial coverage are also widespread features, 

however, the long-term stability and measurement accuracy (Sheik et al., 2024). The latest progress with edge 

computing, adaptive sampling, and energy-efficient communication solutions tries to address these drawbacks 

but currently available IoT-based systems remain limited to large-scale, multi-parameter integration, and large 

area environmental surveillance (Narayana et al., 2024). 

Water Quality Assessment with the Help of Remote Sensing 

Remote sensing has given rise to a potent method of assessing the water quality parameters at a vast 

geographical location because of availability of multispectral and hyperspectral satellite photographs. Sentinel-

2 MSI and Landsat-8 OLI satellites have been extensively used to estimate the concentration of chlorophyll-a, 

turbidity, surface temperature and suspended particulate matter on the basis of spectral indices and machine 

learning models (Chen et al., 2025; Bedell et al., 2022). Multispectral and hyperspectral sensors installed on 

UAVs also lead to improved spatial granularity, and the hotspots of pollution, sediment, and algal distinct can 

be mapped with high resolution (Merabet et al., 2025). Nonetheless, UAV sensing has constraints on flight 
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duration, uncertainty in the weather, as well as, low and temporal coverage likely to be the problem which 

demands combination of both remote sensing and in-situ measurements (Jeong et al., 2024; Adebayo, 2025). 

Environmental Prediction AI Models 

Artificial intelligence (AI) has shown immense achievements in forecasting dynamic processes of complex, 

nonlinear water quality in various aquatic systems. Models of machine learning and deep learning such as 

CNNs, LSTM networks, random forests, and gradient boosting were extensively utilised in predicting quality 

indicators of water, detecting anomalies, and forecasting water pollution incidents with high precision (Li et 

al., 2024; Lu et al., 2025). Hybrids between deep learning and geostatistical techniques like kriging had 

demonstrated better performance in dynamic pollutant dispersion and spatio-temporal variability prediction 

(Kayhomayoon et al., 2021). Dissolved oxygen prediction, algal bloom and multispectral feature extraction 

have also been performed by AI-based models, which indicates that intelligent models highly can be applied 

in data-driven water quality evaluation (Miller et al., 2025; Li et al., 2024; Wu et al., 2024). Nevertheless, the 

current AI models are mostly based on individual sources of data and fail to utilise the synergies of IoT, UAV, 

and satellite data. 

Research Gaps 

Careful analysis of the existing studies demonstrates that the current watershed monitoring systems of riverine 

water quality have critical limitations. First, most systems cannot collect IoT sensors, UAV-generated images, 

and satellite data, and use AI to develop an extensive monitoring system (Narayana et al., 2024). Second, the 

widespread use of sophisticated methods of spatio-temporal fusion does not allow obtaining the dynamics and 

variability of pollution at multiple scales and across riverine landscapes (Miller et al., 2025). Third, limited 

literature makes a predictive relationship between water quality measures and ecosystem health measures, an 

essential part of an effective assessment of environmental risks and evidence-based decisions regarding 

management (Wu et al., 2024). The suggested AI-IoT combined remote sensing scheme fills these holes by 

providing a multi-source, multi-resolution, real-time framework with the assistance of advanced predictive 

intelligence. 

Methodology 

Data Acquisition and Multisource Sensing Architecture 

In-Situ Water Monitoring Using IoT 

The strategic installation of a network of IoT-based in-situ water quality monitoring nodes all over the river 

would be integrated into the proposed framework to measure physicochemical variables of a high resolution 

and at the continuum. Sensors measuring pH, dissolved oxygen (DO), temperature, electrical conductivity 

(EC), turbidity, and total dissolved solids (TDS) as well as nitrate concentration are embedded in each node, 

and can be used to give a complete profile of the local water conditions. Solar-powered microcontrollers like 

ESP32 and STM32 will act as a basis of long-term autonomous execution requiring low maintenance. The 

transmission of real-time data is facilitated with the low-power wide-area network (LPWAN) platforms such 

as LoRaWAN and NB-IoT that provide efficient communication even in the most remote areas or where there 

are no infrastructures. This IoT tier is the time-base of the monitoring system that preserves swift variations 

and temporary pollution accidents that are frequently overlooked by traditional or manual approaches. 
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Unmanned Aerial Vehicles Remote Sensing Sensors 

In order to improve spatial coverage and achieve high-resolution imagery, unmanned aerial vehicles (UAVs) 

that are mounted with multispectral and hyperspectral sensors have to be included in the sensing architecture. 

These platforms that are used to carry the UAVs retrieve information about chlorophyll-a content, surface 

temperature, suspended inorganic material, and visible and near infrared indicators of organic and inorganic 

pollutants. UAV flights on a bi-weekly basis will be utilised to sample localised areas of pollution, sediment 

plumes and algal activity dynamics in finer granular detail than those of satellite imagery. The UAV sensing 

element is a spatial refinement layer that fills the temporal casualties between the intensive observation of the 

IoT elements and the overall spatial coverage offered by the satellite observations, thereby allowing the fine 

descriptions of the sources and distributions of pollution. 

Acquisition of Satellite-Based Remote Sensing 

To augment the IoT and UAV sensory devices, remote sensoring imagery would be available through satellites 

that can be used to measure synoptic coverage in a wide area to determine the quality of water in the basin on 

a blanket scale. Sentinel-2 MSI and Landsat-8 OLI multispectral imagery are regularly obtained by extracting 

spectral indicators of turbidity, chlorophyll-a, and coloured dissolved organic matter (CDOM) and occasional 

Hyperspectral imagery of PRISMA offers a spectral resolution with high accuracy retrieval. These satellite 

platforms allow temporal continuity and analysis of the trends of the future across the riverine system because 

it provides a regular long-term monitoring. By combining satellite data and UAV and IoT measurements, a 

strong multisource sensing architecture is developed that can sense macro-scale patterns of the environment, 

as well as, micro-scale localised cases of pollution. 

Data Fusion, Preprocessing, and Feature Engineering 

Pre-processing and Cleaning of Data 

Data preparation is a very important phase of converting the raw multisource data to an analytically sound and 

understandable dataset that can be used in machine learning and spatio-temporal models. The IoT sensor 

readings are identified as corrupted, missing, or non-congruent and eliminated to avoid biassed learning, and 

a Kalman filtration is utilised to smooth the temporal variations and also eliminate noise in the high-frequency 

sensor fields. In the case of remote sensing data, radiometric and atmospheric corrections are carried out to 

remove haze, variations in illumination and surface reflectance distortions, so that spectral sample values are 

the same at two or more times. Also, the Isolation Forest algorithm is used to detect outliers which are important 

to detect abnormal measurements due to sensor failure, environmental effects, and transmission failure during 

data transmission. Such organised cleaning pipeline will guarantee that the down-stream processes work on 

correct data, stable and of high quality. 

Multisource Data Fusion 

In order to successfully unite IoT, UAV, and satellite observations, a three levels data fusion strategy is adopted 

hierarchically to eliminate the differences in spatial resolution and temporal frequency as well as spectral 

properties. High-resolution interpolation and temporal harmonisation techniques of next-generation 

interpolation and synchronisation convert disparate data streams into one application of temporal fusion, 

uniting high-frequency IoT measurements (minute-level), UAV imagery (day-level), and satellite acquisitions 

(510 day intervals) into a single application. The geographic richness of the data is increased by merging high-

resolution images of UAVs with low-resolution images of satellite data through spatial downscaling, and 
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kriging interpolation, thereby producing spatially continuous water quality maps. Spectral fusion is also 

applied to combine hyperspectral UAV signatures and multispectral satellite bands to increase spectral 

variability and detect features of pollution-sensitive wavelength. These fusion processes result in the multi-

resolution representation of the riverine environment, which is combined. 

Artificial Detection and Representation 

Feature engineering entails the creation of informative and discriminative variables reflecting the physical, 

chemical, and optical properties of the changing dynamics of water quality. The spectral indices include the 

Normalized Difference Water Index (NDWI), Normalized Difference Turbidity Index (NDTI), and the 

chlorophyll-a indices to determine changes in turbidity, vegetation and algal activity. The UAV and satellite 

data used to extract pollution sensitive reflectance ratios help in identifying suspended sediments and dissolved 

organic matter Figure 1. Hydrological properties are also included that describe the dynamics of dilution, 

dispersion, and transport in that, flow rate, velocity of water and depth of the river are included as hydrological 

properties. Moreover, trends of the feature nodated at the time-series of the IoT sensors are mined as the 

temporal gradient features illustrating short-term changes in pollution levels and the Day/Night cycle. All of 

the engineered functionalities are combined into a full feature set that is modelled and predicted. 

 

Figure 1. Workflow diagram for data cleaning, multisource fusion, and feature engineering in the ai–iot 

integrated monitoring framework 

AI-Driven Spatio-Temporal Modeling and Ecosystem Health Assessment 

Deep Learning and Machine Learning Models 

The sophisticated machine learning and deep learning algorithms were used to approximate the complicated 
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data. LSTM-RNNs were used to predict temporary changes in the main water quality parameters and used their 

power to predict long-term temporal variations. Convolutional Neural Networks (CNNs) and XGBoost were 

used to conduct spectral-spatial regression, positively affecting derivation of useful features of UAV and 

satellite images and projecting them onto water quality indicators in a highly accurate manner. Gaussian 

Process Regression (GPR) served to estimate the amount of uncertainty in prediction, and hence give intervals 

of confidence about risks where extensive data is available, whilst Random Forest classification did not 

produce wires of features in order to classify the extent of pollution and also to define natural hotspots. The 

training on models was done using a train-test split of 80:20 in the training model and 10-fold cross-validation 

to be robust, eliminate overfitting and increase the generalisability of the model used at different environmental 

conditions. 

Spatio-Temporal Pollution Modelling 

In order to represent dynamic variability of pollutants in space and time, the research combined various modern 

spatio-temporal modelling methods. Spatio-temporal kriging was implemented to interpolate water quality at 

the unsampled sites creating continuous pollution surfaces representing the spatial variation in pollution as 

well as the temporal variations. Any further improvements in prediction performances were made through 

Deep spatio-temporal residual networks, which build nonlinear patterns and intricate changes among 

hydrological processes, land use, and pollution sources. To model flow velocity, discharge rates, and 

morphometric, hydrodynamic river flow models were included to calculate the processes of transporting 

pollutants. The system actually identified the hotspots areas that needed proactive action by comparing the 

modelled pollution gradients to industrial discharge points and the adjacent land-use. 

Ecosystem Health Assessment and Water Quality Index (WQI) 

An integrated determination of the health of the river was made through the use of a nonlinear equation of the 

key physicochemical variables, such as pH, dissolved oxygen (DO), total dissolved solids (TDS), nitrate 

concentration (NO 3 -), turbidity, and chlorophyll-a, to create a composite Water Quality Index (WQI). A 

broader evaluation of the health of the ecosystem was not restricted to chemical indicators but added ecological 

metrics to assess the ecological health like fish biodiversity scores, likelihood of algal blood, ecological risk 

index (ERI), and stress levels at the habitat. These environmental cues are derived on the basis of AI-based 

classification models and spectral signatures of AI-based classification models on the basis of remote sensing 

data. This holistic system allowed identifying the ecological degradation early on with the help of strong 

quantitative and qualitative indicators that would allow to gain better insight into the conditions of the riverine 

ecosystem. 

Decision Support and Visualisation 

All the analysis results were incorporated into a decision-support dashboard based on geographic information 

system (GIS) to help environmental authorities and policy makers in decision-making in real time. The 

dashboard presented the visualisation of spatio-temporal heat maps of pollution, anticipated trends of 

contamination and the areas with high risk that needed immediate attention. It further offered predictive 

notifications done by AI models, real-time analytics done using IoT sensors, and automated suggestions to 

manage river basins, as a result, increasing situational awareness and the ability to respond Figure 2. This layer 

of visualization converts the complicated products of analysis into practical results, informing a wise control 

of the environment and supporting the long-term sustainability planning. 
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Figure 2. Spatio-temporal ai modeling workflow for water quality prediction and validation 

Results and Discussion 

Sensor Performance Evaluation 

The in-situ monitoring system installed on the IoT was effective, with reliability, and accuracy being recorded 

in all the deployed sensing nodes. The coefficient of correlation of real time sensor measurements that showed 

good correlation (0.92 to 0.97) with the laboratory reference values indicated the accuracy and consistency of 

the sensing architecture. Integration of edge computing meant a significant improvement on system 

responsiveness by bringing data processing latency to below two seconds which is essential when it comes to 

detecting fast changing water quality. This real-time performance highlights that the application of the IoT 

framework is appropriate to monitor the environment in real-time, serve as an early warning system, and 

support adaptive sampling schemes to dynamic riverine environments. 

WQI Estimation by Remote Sensing 

The combination of the satellite data of Sentinel-2 and Landsat-8 with the UAV-based hyperspectral images 

provided effective and spatially detailed estimates of important water quality parameters. Estimates of sentinel-

2 derived turbidity and chlorophyll-a had high coefficients of determination (R 2 = 0.88 and 0.91, respectively), 

which indicated the suitability of multispectral remote sensing in large-scale monitoring of the environment. 

Maximally-enhanced spatial granularity between two and five times the spatial-granularity in satellite imagery 

was afforded by hyperspectual imagery using UAV, enabling localised hotspots of pollution, sediment plumes 

and patterns of algal growth to be detected with precision. It is these findings that confirm the complementary 

nature of satellite and UAVs platforms in the measurement of macro and micro-scale aquatic variability. 

AI Model Performance 

The performance analysis of machine learning and deep learning models revealed that hybrid models always 

performed better than the individual models in the characterization of the nonlinear and spatio-temporal 

characteristics of riverine water quality. The lowest RMSE (0.19) and R2 (0.96) were C 2 on the prediction of 

dissolved oxygen, indicating that LSTM-RNN factors into effect significantly extended temporal correlations. 

The CNN + XGBoost model produced a 0.27 RMSE/0.94 R 2 to estimate turbidity performance which, in 

essence, leveraged both spectral and spatial characteristics derived out of the remote sensing data. In the 
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prediction of nitrates, XGBoost model achieves an RMSE of 0.33 and R 2 of 0.92, and it proves to be better in 

processing the tabular and nonlinear relationship. The results of these studies prove the strength of hybrid 

modelling systems to predict water quality and make decisions according to them. 

Spatio-Temporal Dispersion Analysis 

The application of spatio-temporal analysis showed specific patterns of pollution dispersion that are caused by 

hydrodynamics, land use, and human actions along the river tracts in the study. Spatial kriging interpolations 

provided the pollutant variations in a 40km area and the area showed areas of intense contamination runs close 

to industrial discharges channels and urbanised areas. The deep spatio-temporal models were useful in 

predicting the down-stream movement of contaminants as well as producing the early warning message of the 

possible occurrence of an algal bloom in the event of high nutrient inflow conditions. The hydrodynamic flow 

modelling also confirmed the direction and speed of a transport of the pollutant and provided an insight into 

how the nature of the river flow interacted with the abuse of the dispersal. 

Ecosystem Health Interpretation 

The interpretation of the ecosystem health indicators showed that there are significant ecological stresses 

brought about by poor conditions of water quality. In areas where the dissolved oxygen concentration fell 

below 5mg/l, a vast decrease in fish population was recorded confirming that DO is an important predictor of 

aquatic biodiversity Figure 4. High nutrient load especially of nitrates was closely linked to eutrophication 

trends and higher rates of algal bloom underlining the domino impact of farm runoff and wastewater release 

Table 1. The ecological risk index (ERI) identified a few sections of the river as the right areas of moderate-

to-high risks, which highlighted the necessity of immediate action through the development of specific 

mitigation measures, enhanced control of wastewater, and ongoing environmental control to save aquatic life. 

 

Figure 3. AI model performance for water quality prediction 
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Table 1. Summary of key findings from sensor evaluation, remote sensing, ai performance, dispersion 

modeling, and ecosystem health analysis 

Section Focus Area Key Findings 

Sensor Performance 

Evaluation 

Accuracy & Real-Time 

Monitoring 

• Strong correlation with lab measurements (0.92–

0.97)  

• Latency < 2 seconds due to edge computing  

• High stability and reliability across IoT nodes 

Remote Sensing-Based WQI 

Estimation 

Satellite & UAV-Based 

Assessment 

• Sentinel-2 estimation accuracy: Turbidity (R² = 

0.88), Chl-a (R² = 0.91)  

• UAV hyperspectral provides 2–5× higher spatial 

granularity  

• Effective identification of pollution hotspots and 

algal blooms 

AI Model Performance Hybrid ML/DL Prediction 

Models 

• DO prediction: LSTM-RNN → RMSE = 0.19, R² 

= 0.96  

• Turbidity prediction: CNN + XGBoost → RMSE 

= 0.27, R² = 0.94  

• Nitrate prediction: XGBoost → RMSE = 0.33, R² 

= 0.92  

• Hybrid models outperform standalone algorithms 

Spatio-Temporal Dispersion 

Analysis 

Pollution Spread & 

Dynamics 

• Pollution hotspots near industrial discharge areas  

• Kriging maps show pollutant gradients over a 40 

km stretch  

• Spatio-temporal models predict downstream 

pollutant movement  

• Early-warning alerts issued for algal bloom risk 

Ecosystem Health 

Interpretation 

Ecological Condition 

Assessment 

• Fish decline where DO < 5 mg/L  

• High nitrates linked to eutrophication & bloom 

frequency  

• ERI maps identify moderate-to-high risk zones  

• Need for targeted mitigation and continuous 

monitoring 

Conclusion 

This paper outlines an integrated remote sensing AI/IoT system that can be used to facilitate real-time high-

resolution spatio-temporal observation of aquatic pollution and health of ecosystems within a river system. 

The proposed framework is capable of effectively monitoring the interactions of the multifaceted dynamics of 

water quality changes in space and time by leveraging synergistic interactions between in-situ IoT sensor 

networks, UAV-based multispectral and hyperspectral imaging, and satellite-determined observations at the 

close of a machine learning and deep learning models. The system has good predictive power, high response 

time and fine granularity of space which is way ahead of conventional methods of monitoring. Experimental 

verification results support its high power, scalability and applicability to continuous environmental 

monitoring to determine precisely sources of pollution, predict ecological hazards early and forecast sensitively 

the conditions of water quality. All in all, this hybrid method is a tool of great power as a decision aid to 

environmental agencies, policy makers and scientists to help manage the river basin, devise intervention 

strategies, and long-term ecologically sustainable conservation strategies amidst the growing anthropogenic 

pressures. 



Natural and Engineering Sciences        865 
 

Author Contributions 

All Authors contributed equally. 

Conflict of Interest 

The authors declared that no conflict of interest. 

References  

Adebayo, A. S. (2025) AI Driven Species Recognition and Digital Systematics: Applying Artificial 

Intelligence for Automated Organism Classification in Ecological and Environmental Monitoring, 6(2), 

31-49. https://doi.org/10.55248/gengpi.6.0225.0703 

Bedell, E., Harmon, O., Fankhauser, K., Shivers, Z., & Thomas, E. (2022). A continuous, in-situ, near-time 

fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in 

drinking water: Design, characterization and field validation. Water Research, 220, 118644. 

Chen, D., Chen, Y., Zhou, Z., Tu, W., & Li, L. (2025). Study on internal rise law of fracture water pressure 

and progressive fracture mechanism of rock mass under blasting impact. Tunnelling and Underground 

Space Technology, 161, 106545. 

Jeong, H., Abbas, A., Kim, H. G., Van Hoan, H., Van Tuan, P., Long, P. T., ... & Cho, K. H. (2024). Spatial 

prediction of groundwater salinity in multiple aquifers of the Mekong Delta region using explainable 

machine learning models. Water Research, 266, 122404. 

Kayhomayoon, Z., Azar, N. A., Milan, S. G., Moghaddam, H. K., & Berndtsson, R. (2021). Novel approach 

for predicting groundwater storage loss using machine learning. Journal of Environmental 

Management, 296, 113237. 

Lei, J., Fang, H., Zhu, Y., Chen, Z., Wang, X., Xue, B., ... & Wang, N. (2024). GPR detection localization of 

underground structures based on deep learning and reverse time migration. NDT & E International, 143, 

103043. 

Li, L., Jin, H., Tu, W., & Zhou, Z. (2024). Study on the minimum safe thickness of water inrush prevention in 

karst tunnel under the coupling effect of blasting power and water pressure. Tunnelling and 

Underground Space Technology, 153, 105994. 

Li, X. Y., Wang, H., Wang, Y. Q., Zhang, L. J., & Wu, Y. (2024). Machine Learning-Based Dissolved Oxygen 

Prediction Modeling and Evaluation in the Yangtze River Estuary. Huan jing ke xue= Huanjing 

kexue, 45(12), 7123-7133. https://doi.org/10.13227/j.hjkx.202312111 

Lu, D., Ou, J., Qian, J., Xu, C., & Wang, H. (2025). Prediction of non-equilibrium transport of nitrate nitrogen 

from unsaturated soil to saturated aquifer in a watershed: Insights for groundwater quality and pollution 

risk assessment. Journal of Contaminant Hydrology, 274, 104649. 

Merabet, K., Di Nunno, F., Granata, F., Kim, S., Adnan, R. M., Heddam, S., ... & Zounemat-Kermani, M. 

(2025). Predicting water quality variables using gradient boosting machine: global versus local 

explainability using SHapley Additive Explanations (SHAP). Earth Science Informatics, 18(3), 1-34. 



Natural and Engineering Sciences        866 
 

Miller, T., Durlik, I., Kostecka, E., Kozlovska, P., Łobodzińska, A., Sokołowska, S., & Nowy, A. (2025). 

Integrating artificial intelligence agents with the internet of things for enhanced environmental 

monitoring: applications in water quality and climate data. Electronics, 14(4), 696. 

https://doi.org/10.3390/electronics14040696 

Narayana, T. L., Venkatesh, C., Kiran, A., Kumar, A., Khan, S. B., Almusharraf, A., & Quasim, M. T. (2024). 

Advances in real time smart monitoring of environmental parameters using IoT and 

sensors. Heliyon, 10(7). 

Sheik, A. G., Kumar, A., Sharanya, A. G., Amabati, S. R., Bux, F., & Kumari, S. (2024). Machine learning-

based monitoring and design of managed aquifer rechargers for sustainable groundwater management: 

scope and challenges. Environmental Science and Pollution Research, 1-34. 

https://doi.org/10.1007/s11356-024-35529-3 

Wu, Z., Fang, S., Liu, Y., Li, X., Shen, W. E. I., Mao, Z., & Wu, S. (2024). Enhancing water depth inversion 

accuracy in the Yangtze River's Nantong Channel using random forest and coordinate attention 

mechanisms. Optics Express, 32(26), 46657-46676. 

Yepremyan, H., Asatryan, V., Dallakyan, M., Shahnazaryan, G., & Pusch, M. (2025). Testing Macrophyte-

Based Assessment Tools Developed Under the EU Water Framework Directive for Application in a 

Caucasus Region Country (Armenia). Water, 17(9), 1352. https://doi.org/10.3390/w17091352 


