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Abstract

Acrtificial intelligence (Al), together with environmental biotechnology, is a radical change in the real-time
data of soil and water quality. The common limitations of traditional surveillance techniques include the
fact that there is a long-time lag, and the techniques are prohibitively expensive, such as chemical analysis
in the laboratory, and cannot respond to the dynamics of environmental pollutants. The hybrid framework
suggested in the given research is based on the use of microbial biosensors, in particular, the
microorganisms specially modified to release bioluminescent or electrochemical signals when in touch with
contaminants, as the main units of detection. This layer of hardware is an Internet of Things (10T) that takes
these biological responses and forwards them to a Long Short-Term Memory (LSTM) neural network that
analyzes complex time-series data. The system to provide high sensitivity under varying field conditions
uses a statistical model, which uses non-linear saturation kinetics to calibrate the biological output with
respect to the concentrations of certain contaminants. To narrow down on these predictions, a Generalized
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Linear Model (GLM) is used to sieve the environmental noise that is introduced due to changes in soil pH
and temperature that tend to bias raw sensor values. Moreover, the Bayesian Inference algorithm is applied,
which dynamically optimizes detection thresholds; hence, the system can learn and adapt to a particular site
condition with time. This computational layer was found to work well in minimizing false-positive
reporting by 22 %. As shown in experimental results, this combined methodology has a detection accuracy
of 94.5 % for detecting heavy metals and nitrates and essentially reduces the analysis lead-time from 48
hours to a 15-minute time span. This system allows closing the divide that exists between biological sensing
and computational intelligence, to offer a scalable engineering solution to autonomous environmental
management as well as the development of Precision Remediation strategies in the agricultural and
industrial sectors.
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Introduction

Integrity of soil and water is a vital component of the ecological sustainability and food security in the world
(Alavian & Khodabakhshi, 2025; Kumar et al., 2025). Nevertheless, manual sampling with a subsequent lab
analysis continues to be highly used in the traditional method of monitoring the environment (Shende et al.,
2025). The drawback of this legacy method is that it creates an enormous sampling-to-result lag time (typically
several days) that will not allow action to be taken in response to an acute contamination event (Mittal et al.,
2025). Moreover, the high cost of operation of chemical reagents and specialized labor usually restricts
sampling frequency, creating a discontinuous landscape of data that does not have the spatiotemporal
continuity to trace the dynamic movement of pollutants within complex ecosystems (Das et al., 2025;
Ukhurebor et al., 2021).

Environmental biotechnology has provided the alternative of microbial biosensors, which are less
expensive than their counterparts, but the biological systems are not without inherent limitations (Holzinger
et al., 2023; Popovic¢ et al., 2024). Living sensors are also vulnerable to environmental noise, which includes
changes in temperature, salinity, and pH that would cause false positives or attenuation of signals (Zhang et
al., 2024; Volf et al., 2024). This requires a hybrid solution in which Artificial Intelligence (Al) functions as
a predictive layer (Singh et al., 2025; Ali et al., 2024). The raw biological signal can be contextualized to a
larger environmental dataset, with the help of which the system can differentiate between actual
contamination and natural physiological changes in the biosensor (Renganathan & Gaysina, 2025;
Renganathan et al., 2025).

Although both areas have improved, a research gap has been identified in the literature where the
real-time detection of various pollutants in heterogeneous matrices is done simultaneously (Miller et al., 2025)
(Srivastav et al., 2024; Ashique et al., 2025). The existing systems are tailored to a single analyte with a
controlled system, which does not consider the cocktail effect (a multi-contaminant effect) that occurs in
industrial and agricultural runoff (Singh et al., 2022; Naqvi et al., 2025; Roy & Kumari, 2025).
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The Primary Objectives of this Research are

o To develop a robust sensing platform that integrates genetically optimized microbial biosensors with
an [oT-enabled hardware interface.

e To implement an Al-driven statistical framework, specifically utilizing Bayesian Inference and Long
Short-Term Memory (LSTM) networks, to provide real-time predictive analytics and noise filtration.

e To validate the system’s efficacy in diverse soil and water conditions, ensuring high sensitivity and
reduced false-positive rates for heavy metal and nitrate detection.

The rest of this paper is structured in the following way: Section 2: Methodology and System
Architecture explain the building of the microbial biosensors and the design of the Al-integrated 10T device.
Section 3: Statistical Modeling and Data Processing describes mathematical models, such as the Bayesian
algorithms of signal calibration, as well as noise reduction. Section 4: Experimental Results gives the results
of the performance of the system in terms of accuracy, detection limits, and response times in different
scenarios in the environment. Section 5: Discussion determines the implications of the results, the viability
of the biological parts, and the scalability of the technology to use in industries. Section 6: Conclusion is a
summation of the research contributions made by this study and how this research will be carried out in the
future.

System Architecture & Methodology

The proposed system is crafted as an integrated pipeline, which will transform biological phenomena into
digital intelligence that can be acted upon. It is bifurcated into an architecture of a specialized biotechnological
sensing layer and a powerful computational processing layer.

Phase A: The Biocoenological Layer Phase B: The AT & Hardware Layer
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Figure 1. Methodology flow diagram
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Figure 1 is a complete pipeline transforming biological signals into environmental real-time
intelligence. It starts with a Biotechnological Layer where microbial biosensors (e.g., Pseudomonas
fluorescens) react to the presence of pollutants (e.g., heavy metals or nitrates) by generating bioluminescent
or electrochemical signals. A Transduction interface, e.g., a Silicon Photomultiplier (SiPM), converts these
signals into a digital form.

The latter is fed into the Al and Hardware Layer, where an 10T node with either LoRaWAN or 5G
connectivity sends to a cloud platform the signal, but also includes a sensor, which measures environmental
variables (pH, temperature, and moisture). Al engine then carries out Data Pre-Processing to sieve out
environmental noise, and then carries out advanced modeling based on LSTM (Long Short-Term Memory)
on time-series forecasting and Random Forest on pollutant classification. This unified workflow enables a
high level of accuracy of detection and instant notification, as a result of a mobile or web-based user interface,
to permit a quick response to the contamination events.

Phase A: The Biotechnological Layer

Biosensor Design: The major sensing components include microbial strains that are genetically modified, like
Pseudomonas fluorescens or Escherichia coli constructs, which have certain reporter genes (ex, luxCDABE or
gfp). These microorganisms are confined in a hydrogel system that is biocompatible, allowing the diffusion of
the target pollutants, including cadmium (Cd 2+), lead (Pb 2+), or nitrates, and shielding the cellular integrity
against the harmful soil particulates. When the genetic switch is in contact with the target analyte, it activates
the expression of a bioluminescent or an electrochemical response that is proportional to the amount of
contaminant.

Transduction: A transduction interface is used in order to fill the gap between electronics and
biology. In case of bioluminescent signals, a photon emitter is placed over the microbial chamber in the form
of a highly sensitive Silicon Photomultiplier (SiPM) or a photodiode. In the case of electrochemical sensors,
a microelectrode array is used to sense the variation of current or potential produced by the microbial
metabolic activity. This biological signal is then converted to some raw analog voltage that is converted to a
digital signal by an Analog-to-Digital Converter (ADC).

Phase B: The Al & Hardware Layer

Data Acquisition and Transmission: The digital signal is processed by a microcontroller (MCU) that consumes
very low power and functions as an 1oT Node. The system employs LoRaWAN in remote agricultural or
industrial areas to make sure that distant locations are also connected with either low-power data transmission
or high-bandwidth urban water monitoring using 5G/LTE-M. These nodes pass data packets with the biosensor
output and metadata of other auxiliary environmental sensors.

Data Pre-processing: The raw biological data is, by definition, noisy when there are external
variables. The system does pre-process of real-time data before the Al analysis, which includes:
Normalization: Data is scaled to take into consideration the natural decay of the biological activity with time.

Environmental Correction: toward the goal of filtering out transient variations that could resemble
a pollutant response, the data of integrated DHT22 (humidity/temperature) and pH probes are used. Signal
Smoothing: The Kalman filter is used to filter out high-frequency electronic noise in the sensor readings. Al
Modeling: The main component of the intelligence layer is a recurrent neural network in the form of a Long
Short-Term Memory (LSTM).
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LSTMs are specifically selected due to their capability to identify the time-related correlations in
sensor data to allow the system to differentiate between a rapid increase (acute contamination) and a slow-
moving behavior (sensor degradation or changing season). To classify the multi-pollutants, the performance
of a Random Forest regressor is done in parallel to determine the individual chemical signature using the
distinctive reaction rates that were measured in the microbial layer.

Experimental Setup and Data Collection

Evaluation of the Integrated Al-Biotech System

A pilot study was done to examine the effectiveness of the combined Al-Biotech system in a 60-day study.
This stage was devoted to the validation of the system on the basis of the standard laboratory conditions and
the acknowledgment of the system's viability in the conditions of changes in the field.

Site Characterization

Two different sites were used in carrying out the study to ascertain the versatility of the system in various
matrices. Site A was a drainage agricultural zone that had a loamy soil and had high nitrate runoff as a result
of the seasonal fertilizing process. Site B. Site B was a freshwater riparian habitat below one industrial
discharge outlet, which had good chances of containing heavy metals, specifically lead (Pb 2+) and cadmium
(Cd 2+). The physicochemical bases of such locations were created to correct the environmental algorithms of
the Al.

Baseline Measurements and Ground Truthing

To verify the presence of a ground truth of the Al sensors, daily physical samples were taken and examined
using conventional laboratory processes. The samples of soil were Acid Digested, and then Inductively
Coupled Plasma Mass Spectrometry (ICP-MS) was performed, and samples of water were analyzed using lon
Chromatography. These laboratory results were highly precise and were used to train the Random Forest
classification models and verify the accuracy of the LSTM forecasting.

Stress Testing

The system was intentionally stress-tested to establish its limits of the biological and electronic components.
This involved the simulation of intense rainfall to determine the signal-to-noise ratio of a saturated soil and the
development of high salinity gradients to determine the resilience of microbes. The benchmarks of
performance in these diverse environments are as shown in the table above:

Table 1. Experimental performance

Parameter Standard Conditions High Salinity Stress Heavy Rainfall/Saturation
Detection Accuracy 94.5% 88.2% 91.0%
Signal Latency 12-15 min 18-20 min 15-18 min
False Positive Rate 2.1% 5.8% 4.2%
Biosensor Stability | High (95% activity) | Moderate (78% activity) High (92% activity)
Data Packet Loss <1% <1% 3.5% (due to interference)

As shown in Table 1, the Al-Biotech integration exhibits a high level of correlation with the ICP-MS
results under the normal environmental conditions. Although the microbial signal was impaired slightly by
high salinity, causing the engine to raise latency and lower the accuracy, the engine of the Bayesian Inference
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was able to tune the detection thresholds to preserve an operable accuracy of more than 88%. In the case of
simulated heavy rainfall, the main issue was that small amounts of data packets are lost, but in the simulations,
the LSTM network would be used to reconstruct lost data using previous temporal data, ensuring continuity
in the water quality monitoring stream.Metrics used for Table 1.

Detection Accuracy (DA)

DA = True Positives % 100 (1)

" True Positives+False Positives

From Equation (1), True Positives (TP): Number of correct positive predictions (correct detection
of contaminants). False Positives (FP): Number of incorrect positive predictions (incorrect identification of
contaminants).

Signal Latency (SL)

n
Z Latency ;
i=1

n

SL = (2)

From Equation (2), Latency; is the Time delay for the i-th signal detection, n is the total number of
detections.

False Positive Rate (FPR)

FPR = False Positives % 100 (3)

False Positives+True Negatives

From Equation (3), False Positives (FP) are the number of incorrect positive predictions (as defined
earlier). True Negatives (TN): Number of correct negative predictions (correctly identifying no
contamination).

Biosensor Stability (BS)

__ Stable Activity
" Total A ctivity

100 (4)

From Equation (4), Stable Activity is the time or proportion the biosensor remains functional or active
without significant degradation, and Total Activity is the total operational time or activity observed during
the test.

Data Packet Loss (DPL)

Number of Lost Packets
DPL =
Total Number of Packets Sent

100 (5)

From Equation (5), the Number of Lost Packets is the number of data packets that failed to reach
their destination, and the total number of Packets Sent is the total number of packets transmitted.

These formulas give the quantitative measures for the system’s performance in each of the specified
metrics.
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Results and Discussion

The combination of microbial biosensors and an Al-based layer of computations proved the level of accuracy
that is very high in not only monitoring the current pollutants but also in predicting the environmental trends
in the future. The findings indicate that the system can achieve high sensitivity in the presence of natural
biological variation of living sensors.

Sensitivity and Specificity

The system exhibited exceptional sensitivity for heavy metals, with a detection limit of 0.5 pg/L for Pb*" and
1.2 pg/L for Cd**. The Random Forest classification algorithm proved highly specific, successfully
differentiating between nitrate runoff and heavy metal presence with a 96.2% classification score. This
precision is attributed to the AD’s ability to analyze the unique "induction curve" (the rate at which light
intensity increases) generated by the microbial biosensors for different chemical triggers.

Real-Time Performance and Predictive Accuracy

One of the important metrics of this study was the delay between the first contact with the chemical and the
notification of the user. Although the conventional laboratory processes take 48- 72 hours, the system took an
average of 14.2 minutes to provide an alert. Also, the LSTM network was highly predictive in the pollutant
migration. The model was used to forecast the trends in the concentration of nitrate 6 hours ahead using
historical time-series data, with a Coefficient of Determination (R2 ) equal to 0.92 and Root Mean Square
Error (RMSE) equal to 0.045.

Real-Time Pollutant Detection: Al Prediction vs. Laboratory Ground Truth

= — Laboratory Ground Truth (ICP-MS)
74 - Al-Biotech Predicted Level

Concentration (mg/L)

0 5 10 15 20 25
Time of Day (Hours)

Figure 2. Real-time pollutant detection: ai prediction vs laboratory ground truth

Figure 2 shows that there is a very high consistency between the Al predictions, which happen in a
real-time manner, and the laboratory ground truth. Such small variations recorded in the middle of the day
(12:00-14:00) were corrected by the Bayesian Inference engine, which explained the slight thermal inhibition
of the microbial sensors in the high sun exposure.
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Comparative Analysis

In order to assess the engineering importance of this study, the integrated AI-Biotech system was contrasted to
the customary dumb (non-Al) electrochemical sensors and conventional laboratory sampling.

Table 2. Comparative performance analysis of monitoring methodologies

Feature Traditional Lab Analysis | Standard Electronic Sensors | Integrated Al-Biotech System
Response Time 2-3 Days Real-time Real-time (<15 min)
Specificity Extremely High Low (Interference-prone) High (Al-Filtered)

Cost per Sample High ($50-$200) Low Very Low (<1)
Continuous Monitoring No Yes Yes (with predictive alerts)
Accuracy (R?) 0.99 (Benchmark) 0.72 0.92

Table 2 findings support the assumption that the predictive layer offered by Al defeats the main challenge of
environmental biotechnology: the vulnerability to environmental variability. Typically, the standard
electronic sensors have trouble with the drift in soil (this is reflected by the lower R2 of the standard sensors
of 0.72), but this system proposes to use the Generalized Linear Model (GLM) in order to compensate for
soil moisture and pH at any given time. This makes the biological signal be interpreted correctly in diverse
environmental conditions. The large value of R2 denotes that it is not only a feasible substitute for expensive
lab tests, which are expensive to carry out and yield quick screenings, but also a better instrument to be
utilized in long-term monitoring, where continuous data is the most important.

Engineering Challenges and Environmental Implications

Engineering trade-offs are unique with the use of a hybrid Al-biotech system in uncontrolled field environments.
The main issue is the biocompatibility and sensor lifetime; the electronic components can function indefinitely
with power, whereas the microbial biosensors have a limitation on the duration of functionality. The second
application in this paper was the entrapment of microbes within special hydrogels, which prolonged the life of the
sensor to a period of about 45 days, but the natural decay of the nutrients and competition with native microflora
in the soil eventually caused loss of signal. Moreover, there is a major engineering trade-off between the Al
processing and energy autonomy. The frequency of high-frequency sampling and the implementation of
complicated models of LSTMs on the edge are power-consuming components that can exhaust the lithium-ion
batteries of remote 10T nodes in weeks. To reduce this, a sleep-wake protocol was adopted: the Bayesian Inference
engine is activated only when the low-power analog circuit makes a notification of breach of a threshold, triggering
the initiation of the high-power Al model. This technology, in terms of environmental sustainability, facilitates
Precision Remediation. Stakeholders can use granular, real-time heatmaps of contamination to apply chemical or
biological interventions to the top 1% of occupied land, and this allows the environmental cleanup efforts to
decrease the chemical footprint and massively reduce the use of chemicals in the process.

Conclusion

This study manages to reveal how environmental biotechnology and artificial intelligence are integrated to monitor
the quality of soil and water in real time. Combination of a high-sensitivity microbial biosensor and predictive
models (TLSTM and Bayesian) has resulted in a system that is almost as accurate as a laboratory (R2 = 0.92) and
has a response time of less than 15 minutes. This is a paradigm shift from reactive and lab-dependent monitoring
to an independent, autonomous approach to surveillance. Global scalability of the system is witnessed through the
potential to be used as smart-city infrastructure, where it can be incorporated into municipal water systems, and
also monitor industrial runoff in remote mining localities. The future work will involve bridging the gap between
detection and action by means of Autonomous Remediation. This includes the creation of Al-based bio-pumps,
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which, in case of a contamination warning by the sensing node, automatically discharge certain neutralizers or
bioremediation substances. These would bring us a step closer to a complete self-healing environmental
management infrastructure.
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