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Abstract 

Artificial intelligence (AI), together with environmental biotechnology, is a radical change in the real-time 

data of soil and water quality. The common limitations of traditional surveillance techniques include the 

fact that there is a long-time lag, and the techniques are prohibitively expensive, such as chemical analysis 

in the laboratory, and cannot respond to the dynamics of environmental pollutants. The hybrid framework 

suggested in the given research is based on the use of microbial biosensors, in particular, the 

microorganisms specially modified to release bioluminescent or electrochemical signals when in touch with 

contaminants, as the main units of detection. This layer of hardware is an Internet of Things (IoT) that takes 

these biological responses and forwards them to a Long Short-Term Memory (LSTM) neural network that 

analyzes complex time-series data. The system to provide high sensitivity under varying field conditions 

uses a statistical model, which uses non-linear saturation kinetics to calibrate the biological output with 

respect to the concentrations of certain contaminants. To narrow down on these predictions, a Generalized 
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Linear Model (GLM) is used to sieve the environmental noise that is introduced due to changes in soil pH 

and temperature that tend to bias raw sensor values. Moreover, the Bayesian Inference algorithm is applied, 

which dynamically optimizes detection thresholds; hence, the system can learn and adapt to a particular site 

condition with time. This computational layer was found to work well in minimizing false-positive 

reporting by 22 %. As shown in experimental results, this combined methodology has a detection accuracy 

of 94.5 % for detecting heavy metals and nitrates and essentially reduces the analysis lead-time from 48 

hours to a 15-minute time span. This system allows closing the divide that exists between biological sensing 

and computational intelligence, to offer a scalable engineering solution to autonomous environmental 

management as well as the development of Precision Remediation strategies in the agricultural and 

industrial sectors. 
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Introduction 

Integrity of soil and water is a vital component of the ecological sustainability and food security in the world 

(Alavian & Khodabakhshi, 2025; Kumar et al., 2025). Nevertheless, manual sampling with a subsequent lab 

analysis continues to be highly used in the traditional method of monitoring the environment (Shende et al., 

2025). The drawback of this legacy method is that it creates an enormous sampling-to-result lag time (typically 

several days) that will not allow action to be taken in response to an acute contamination event (Mittal et al., 

2025). Moreover, the high cost of operation of chemical reagents and specialized labor usually restricts 

sampling frequency, creating a discontinuous landscape of data that does not have the spatiotemporal 

continuity to trace the dynamic movement of pollutants within complex ecosystems (Das et al., 2025; 

Ukhurebor et al., 2021).  

Environmental biotechnology has provided the alternative of microbial biosensors, which are less 

expensive than their counterparts, but the biological systems are not without inherent limitations (Holzinger 

et al., 2023; Popović et al., 2024). Living sensors are also vulnerable to environmental noise, which includes 

changes in temperature, salinity, and pH that would cause false positives or attenuation of signals (Zhang et 

al., 2024; Volf et al., 2024). This requires a hybrid solution in which Artificial Intelligence (AI) functions as 

a predictive layer (Singh et al., 2025; Ali et al., 2024). The raw biological signal can be contextualized to a 

larger environmental dataset, with the help of which the system can differentiate between actual 

contamination and natural physiological changes in the biosensor (Renganathan & Gaysina, 2025; 

Renganathan et al., 2025).  

Although both areas have improved, a research gap has been identified in the literature where the 

real-time detection of various pollutants in heterogeneous matrices is done simultaneously (Miller et al., 2025) 

(Srivastav et al., 2024; Ashique et al., 2025). The existing systems are tailored to a single analyte with a 

controlled system, which does not consider the cocktail effect (a multi-contaminant effect) that occurs in 

industrial and agricultural runoff (Singh et al., 2022; Naqvi et al., 2025; Roy & Kumari, 2025). 
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The Primary Objectives of this Research are 

• To develop a robust sensing platform that integrates genetically optimized microbial biosensors with 

an IoT-enabled hardware interface. 

• To implement an AI-driven statistical framework, specifically utilizing Bayesian Inference and Long 

Short-Term Memory (LSTM) networks, to provide real-time predictive analytics and noise filtration. 

• To validate the system’s efficacy in diverse soil and water conditions, ensuring high sensitivity and 

reduced false-positive rates for heavy metal and nitrate detection. 

The rest of this paper is structured in the following way: Section 2: Methodology and System 

Architecture explain the building of the microbial biosensors and the design of the AI-integrated IoT device. 

Section 3: Statistical Modeling and Data Processing describes mathematical models, such as the Bayesian 

algorithms of signal calibration, as well as noise reduction. Section 4: Experimental Results gives the results 

of the performance of the system in terms of accuracy, detection limits, and response times in different 

scenarios in the environment. Section 5: Discussion determines the implications of the results, the viability 

of the biological parts, and the scalability of the technology to use in industries. Section 6: Conclusion is a 

summation of the research contributions made by this study and how this research will be carried out in the 

future. 

System Architecture & Methodology 

The proposed system is crafted as an integrated pipeline, which will transform biological phenomena into 

digital intelligence that can be acted upon. It is bifurcated into an architecture of a specialized biotechnological 

sensing layer and a powerful computational processing layer. 

 

Figure 1. Methodology flow diagram 
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Figure 1 is a complete pipeline transforming biological signals into environmental real-time 

intelligence. It starts with a Biotechnological Layer where microbial biosensors (e.g., Pseudomonas 

fluorescens) react to the presence of pollutants (e.g., heavy metals or nitrates) by generating bioluminescent 

or electrochemical signals. A Transduction interface, e.g., a Silicon Photomultiplier (SiPM), converts these 

signals into a digital form.  

The latter is fed into the AI and Hardware Layer, where an IoT node with either LoRaWAN or 5G 

connectivity sends to a cloud platform the signal, but also includes a sensor, which measures environmental 

variables (pH, temperature, and moisture). AI engine then carries out Data Pre-Processing to sieve out 

environmental noise, and then carries out advanced modeling based on LSTM (Long Short-Term Memory) 

on time-series forecasting and Random Forest on pollutant classification. This unified workflow enables a 

high level of accuracy of detection and instant notification, as a result of a mobile or web-based user interface, 

to permit a quick response to the contamination events. 

Phase A: The Biotechnological Layer 

Biosensor Design: The major sensing components include microbial strains that are genetically modified, like 

Pseudomonas fluorescens or Escherichia coli constructs, which have certain reporter genes (ex, luxCDABE or 

gfp). These microorganisms are confined in a hydrogel system that is biocompatible, allowing the diffusion of 

the target pollutants, including cadmium (Cd 2+), lead (Pb 2+), or nitrates, and shielding the cellular integrity 

against the harmful soil particulates. When the genetic switch is in contact with the target analyte, it activates 

the expression of a bioluminescent or an electrochemical response that is proportional to the amount of 

contaminant.  

Transduction: A transduction interface is used in order to fill the gap between electronics and 

biology. In case of bioluminescent signals, a photon emitter is placed over the microbial chamber in the form 

of a highly sensitive Silicon Photomultiplier (SiPM) or a photodiode. In the case of electrochemical sensors, 

a microelectrode array is used to sense the variation of current or potential produced by the microbial 

metabolic activity. This biological signal is then converted to some raw analog voltage that is converted to a 

digital signal by an Analog-to-Digital Converter (ADC). 

Phase B: The AI & Hardware Layer 

Data Acquisition and Transmission: The digital signal is processed by a microcontroller (MCU) that consumes 

very low power and functions as an IoT Node. The system employs LoRaWAN in remote agricultural or 

industrial areas to make sure that distant locations are also connected with either low-power data transmission 

or high-bandwidth urban water monitoring using 5G/LTE-M. These nodes pass data packets with the biosensor 

output and metadata of other auxiliary environmental sensors.  

Data Pre-processing: The raw biological data is, by definition, noisy when there are external 

variables. The system does pre-process of real-time data before the AI analysis, which includes: 

Normalization: Data is scaled to take into consideration the natural decay of the biological activity with time.  

Environmental Correction: toward the goal of filtering out transient variations that could resemble 

a pollutant response, the data of integrated DHT22 (humidity/temperature) and pH probes are used. Signal 

Smoothing: The Kalman filter is used to filter out high-frequency electronic noise in the sensor readings. AI 

Modeling: The main component of the intelligence layer is a recurrent neural network in the form of a Long 

Short-Term Memory (LSTM).  
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LSTMs are specifically selected due to their capability to identify the time-related correlations in 

sensor data to allow the system to differentiate between a rapid increase (acute contamination) and a slow-

moving behavior (sensor degradation or changing season). To classify the multi-pollutants, the performance 

of a Random Forest regressor is done in parallel to determine the individual chemical signature using the 

distinctive reaction rates that were measured in the microbial layer. 

Experimental Setup and Data Collection 

Evaluation of the Integrated AI-Biotech System 

A pilot study was done to examine the effectiveness of the combined AI-Biotech system in a 60-day study. 

This stage was devoted to the validation of the system on the basis of the standard laboratory conditions and 

the acknowledgment of the system's viability in the conditions of changes in the field. 

Site Characterization 

Two different sites were used in carrying out the study to ascertain the versatility of the system in various 

matrices. Site A was a drainage agricultural zone that had a loamy soil and had high nitrate runoff as a result 

of the seasonal fertilizing process. Site B. Site B was a freshwater riparian habitat below one industrial 

discharge outlet, which had good chances of containing heavy metals, specifically lead (Pb 2+) and cadmium 

(Cd 2+). The physicochemical bases of such locations were created to correct the environmental algorithms of 

the AI. 

Baseline Measurements and Ground Truthing 

To verify the presence of a ground truth of the AI sensors, daily physical samples were taken and examined 

using conventional laboratory processes. The samples of soil were Acid Digested, and then Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) was performed, and samples of water were analyzed using Ion 

Chromatography. These laboratory results were highly precise and were used to train the Random Forest 

classification models and verify the accuracy of the LSTM forecasting. 

Stress Testing 

The system was intentionally stress-tested to establish its limits of the biological and electronic components. 

This involved the simulation of intense rainfall to determine the signal-to-noise ratio of a saturated soil and the 

development of high salinity gradients to determine the resilience of microbes. The benchmarks of 

performance in these diverse environments are as shown in the table above: 

Table 1. Experimental performance 

Parameter Standard Conditions High Salinity Stress Heavy Rainfall/Saturation 

Detection Accuracy 94.5% 88.2% 91.0% 

Signal Latency 12–15 min 18–20 min 15–18 min 

False Positive Rate 2.1% 5.8% 4.2% 

Biosensor Stability High (95% activity) Moderate (78% activity) High (92% activity) 

Data Packet Loss < 1% < 1% 3.5% (due to interference) 
 

As shown in Table 1, the AI-Biotech integration exhibits a high level of correlation with the ICP-MS 

results under the normal environmental conditions. Although the microbial signal was impaired slightly by 

high salinity, causing the engine to raise latency and lower the accuracy, the engine of the Bayesian Inference 
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was able to tune the detection thresholds to preserve an operable accuracy of more than 88%. In the case of 

simulated heavy rainfall, the main issue was that small amounts of data packets are lost, but in the simulations, 

the LSTM network would be used to reconstruct lost data using previous temporal data, ensuring continuity 

in the water quality monitoring stream.Metrics used for Table 1. 

Detection Accuracy (DA) 

𝐷𝐴 =
True Positives

True Positives+False Positives
× 100   (1) 

From Equation (1), True Positives (TP): Number of correct positive predictions (correct detection 

of contaminants). False Positives (FP): Number of incorrect positive predictions (incorrect identification of 

contaminants). 

Signal Latency (SL) 

𝑆𝐿 =
∑ Latency 𝑖

𝑛

𝑖=1

𝑛
                 (2) 

From Equation (2), Latency𝑖 is the Time delay for the 𝑖-th signal detection, n is the total number of 

detections. 

False Positive Rate (FPR) 

𝐹𝑃𝑅 =
False Positives

False Positives+True Negatives
× 100  (3) 

From Equation (3), False Positives (FP) are the number of incorrect positive predictions (as defined 

earlier). True Negatives (TN): Number of correct negative predictions (correctly identifying no 

contamination). 

Biosensor Stability (BS) 

𝐵𝑆 =
Stable Activity

Total A ctivity
× 100              (4) 

From Equation (4), Stable Activity is the time or proportion the biosensor remains functional or active 

without significant degradation, and Total Activity is the total operational time or activity observed during 

the test. 

Data Packet Loss (DPL) 

𝐷𝑃𝐿 =
Number of Lost Packets

Total Number of Packets Sent
× 100  (5) 

From Equation (5), the Number of Lost Packets is the number of data packets that failed to reach 

their destination, and the total number of Packets Sent is the total number of packets transmitted. 

These formulas give the quantitative measures for the system’s performance in each of the specified 

metrics. 
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Results and Discussion 

The combination of microbial biosensors and an AI-based layer of computations proved the level of accuracy 

that is very high in not only monitoring the current pollutants but also in predicting the environmental trends 

in the future. The findings indicate that the system can achieve high sensitivity in the presence of natural 

biological variation of living sensors. 

Sensitivity and Specificity 

The system exhibited exceptional sensitivity for heavy metals, with a detection limit of 0.5 µg/L for Pb²⁺ and 

1.2 µg/L for Cd²⁺. The Random Forest classification algorithm proved highly specific, successfully 

differentiating between nitrate runoff and heavy metal presence with a 96.2% classification score. This 

precision is attributed to the AI’s ability to analyze the unique "induction curve" (the rate at which light 

intensity increases) generated by the microbial biosensors for different chemical triggers. 

Real-Time Performance and Predictive Accuracy 

One of the important metrics of this study was the delay between the first contact with the chemical and the 

notification of the user. Although the conventional laboratory processes take 48- 72 hours, the system took an 

average of 14.2 minutes to provide an alert. Also, the LSTM network was highly predictive in the pollutant 

migration. The model was used to forecast the trends in the concentration of nitrate 6 hours ahead using 

historical time-series data, with a Coefficient of Determination (R2 ) equal to 0.92 and Root Mean Square 

Error (RMSE) equal to 0.045. 

 

Figure 2. Real-time pollutant detection: ai prediction vs laboratory ground truth 

Figure 2 shows that there is a very high consistency between the AI predictions, which happen in a 

real-time manner, and the laboratory ground truth. Such small variations recorded in the middle of the day 

(12:00-14:00) were corrected by the Bayesian Inference engine, which explained the slight thermal inhibition 

of the microbial sensors in the high sun exposure. 
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Comparative Analysis 

In order to assess the engineering importance of this study, the integrated AI-Biotech system was contrasted to 

the customary dumb (non-AI) electrochemical sensors and conventional laboratory sampling.  

Table 2. Comparative performance analysis of monitoring methodologies   

Feature Traditional Lab Analysis Standard Electronic Sensors Integrated AI-Biotech System 

Response Time 2–3 Days Real-time Real-time (<15 min) 

Specificity Extremely High Low (Interference-prone) High (AI-Filtered) 

Cost per Sample High ($50–$200) Low Very Low (<1) 

Continuous Monitoring No Yes Yes (with predictive alerts) 

Accuracy (R²) 0.99 (Benchmark) 0.72 0.92 

 Table 2 findings support the assumption that the predictive layer offered by AI defeats the main challenge of 

environmental biotechnology: the vulnerability to environmental variability. Typically, the standard 

electronic sensors have trouble with the drift in soil (this is reflected by the lower R2 of the standard sensors 

of 0.72), but this system proposes to use the Generalized Linear Model (GLM) in order to compensate for 

soil moisture and pH at any given time. This makes the biological signal be interpreted correctly in diverse 

environmental conditions. The large value of R2 denotes that it is not only a feasible substitute for expensive 

lab tests, which are expensive to carry out and yield quick screenings, but also a better instrument to be 

utilized in long-term monitoring, where continuous data is the most important.  

Engineering Challenges and Environmental Implications 

Engineering trade-offs are unique with the use of a hybrid AI-biotech system in uncontrolled field environments. 

The main issue is the biocompatibility and sensor lifetime; the electronic components can function indefinitely 

with power, whereas the microbial biosensors have a limitation on the duration of functionality. The second 

application in this paper was the entrapment of microbes within special hydrogels, which prolonged the life of the 

sensor to a period of about 45 days, but the natural decay of the nutrients and competition with native microflora 

in the soil eventually caused loss of signal. Moreover, there is a major engineering trade-off between the AI 

processing and energy autonomy. The frequency of high-frequency sampling and the implementation of 

complicated models of LSTMs on the edge are power-consuming components that can exhaust the lithium-ion 

batteries of remote IoT nodes in weeks. To reduce this, a sleep-wake protocol was adopted: the Bayesian Inference 

engine is activated only when the low-power analog circuit makes a notification of breach of a threshold, triggering 

the initiation of the high-power AI model. This technology, in terms of environmental sustainability, facilitates 

Precision Remediation. Stakeholders can use granular, real-time heatmaps of contamination to apply chemical or 

biological interventions to the top 1% of occupied land, and this allows the environmental cleanup efforts to 

decrease the chemical footprint and massively reduce the use of chemicals in the process. 

Conclusion 

This study manages to reveal how environmental biotechnology and artificial intelligence are integrated to monitor 

the quality of soil and water in real time. Combination of a high-sensitivity microbial biosensor and predictive 

models (TLSTM and Bayesian) has resulted in a system that is almost as accurate as a laboratory (R2 = 0.92) and 

has a response time of less than 15 minutes. This is a paradigm shift from reactive and lab-dependent monitoring 

to an independent, autonomous approach to surveillance. Global scalability of the system is witnessed through the 

potential to be used as smart-city infrastructure, where it can be incorporated into municipal water systems, and 

also monitor industrial runoff in remote mining localities. The future work will involve bridging the gap between 

detection and action by means of Autonomous Remediation. This includes the creation of AI-based bio-pumps, 
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which, in case of a contamination warning by the sensing node, automatically discharge certain neutralizers or 

bioremediation substances. These would bring us a step closer to a complete self-healing environmental 

management infrastructure. 
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