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Abstract 

The adequate management of the aquatic system which includes rivers, lakes, reservoirs, wetlands, and 

coastal areas will need the continuous and high-resolution monitoring of the environment that will be able 

to handle the fast hydrological and ecological shifts. Conventional field methods of sampling offer poor 

spatial and temporal resolution, and they frequently do not reveal early pollution incidences, predict 

ecological hazards, or assist data-driven resources optimization. This paper will introduce an 

interdisciplinary smart environmental engineering paradigm that will combine Internet of Things (IoT) 

sensor networks, multispectral and synthetic aperture radar (SAR) satellite remote sensing, and machine 

learning (ML) analytics to allow real-time, predictive, and adaptive management of aquatic resources. In 

the given methodology, a hierarchical data fusion architecture is used to bring the high-frequency 

measurements of the in-situ sensors in harmony with the big data measurements of the satellites to 

improve the spatial-temporal resolution and interpretability of the environment. Various ML 

architectures, such as the Random Forest (classification), LSTM (time-series prediction), CNN-based 

spatial models (detecting the harmful algae bloom), and physics-informed neural networks (PINNs) 

(making predictions based on hydrodynamics) were tested to determine their efficiency involved in the 

forecasting of water quality parameters, assessing the pollution sources, and defining the habitat health. A 

pilot application of the integrated system in an actual freshwater lake showed that the integrated system is 

more effective at the prediction accuracy level (27 percent improvement), spatial mapping reliability, and 

a shorter (41 percent less) time to detect contaminants than traditional monitoring approaches. The results 

indicate the potential of integrating IoT with satellites and machine learning to enable a flexible, robust, 

and smart system of monitoring that can ultimately contribute to the active management of the 

environment, reinforce the methods of climate change adaptation, and help to achieve the sustainable 

preservation of water resources. 
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Introduction 

Rivers, lakes, reservoirs, estuaries, and coastal areas are aquatic ecosystems that are significant in sustaining 

the human societies and ecosystem balance. They supply important services like the supply of drinking 

water, fisheries production, hydropower generation, nutrient cycling, biodiversity conservation as well as 

climate regulation. Nevertheless, the ecosystems are beginning to be overwhelmed due to human level and 

anthropogenic activities and environmental factors. Rapid urbanisation, industrial effluents, agriculture 

runoffs which have been increased with nutrient and pesticides and effects of climate change, including 

changed rainfall patterns and increased temperature, have escalated the degradation and increased the 

chances of the ecological system being unstable. These are causes of worries that require more effective, 

more precise and more proactive environmental monitoring systems. 

The conventional methods of aquatic investigation mainly depend on hand field-based sampling and 

laboratory testing. Even though these techniques are scientifically valid in providing quantifiable 

measurements, they are restricted to small areas, scarce sampling rates, and sluggish reports. Therefore, they 

tend to miss the extreme dynamism of aquatic processes, such as infusion of pollutants fast, short-term bouts 

of eutrophication, harmful algal blooms (HABs), and sediment agitation, and transient alteration of thermal 

stratification. The failure to offer real-time and sustained information by more traditional means limits the 
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ability of environmental managers to introduce interventions in time and prevent the development of possible 

risks to the ecological environment. 

The recent developments in smart sensing technologies, satellite remote sensing, as well as data-

driven analytics have established new chances to revolutionise the process of monitoring aquatic resources. 

Real-time fueled water quality sensors (Internet of Things sensor, IoT sensor) allow to gain high-frequency 

water quality measurements such as pH, dissolved oxygen, turbidity, temperature, chlorophyll-a, nutrient 

concentrations with minimum human participation. Majority of the earth observation satellites like Sentinel-1 

SAR, Sentinel-2 MSI, Landsat-8/9 OLI, and MODIS offer large spatial coverage, multi-spectral data, and 

long-term environmental patterns. In the meantime, machine learning (ML) methods, including those based 

on classical models, deep learning and physics-informed neural networks (PINNs) present compelling 

predictive modelling, anomaly detection, pattern classification and decision support as well. 

In light of complementary advantages of these technologies, the proposed paper presents a combined 

smart environmental engineering solution involving an IoT-based in-situ sensing system, satellites remote 

sensing as well as machine learning analytics used to advance the precision, reactivity, and sustainability of 

aquatic resource management Figure 1. This study will help in offering a scalable, real-time, and adaptable 

data collection solution by designing a hybrid data fusion framework and testing various ML algorithms to 

forecast water quality, identify the source of pollution, and assess ecological risks. The results of this effort 

will assist in evolution of sustainable environmental administration practises and enhance strength to novel 

aquatic ecosystem dilemmas. 

 

Figure 1. Integrated framework illustrating the role of iot sensors, satellite remote sensing, and machine 

learning in smart environmental engineering for sustainable aquatic resource management  

Related Work 

Internet of Things-Type Environmental Aquatic Monitoring 

Internet of Things (IoT) technologies have greatly enhanced real-time monitoring of water quality by 

facilitating in the continuous measurement of the parameters including pH, dissolved oxygen (DO), turbidity, 

temperature, and nutrient concentration levels. The low-power sensor networks and wireless communication 

protocols applied in aquatic environments have been proven to be effective in several studies. Indicatively, 

(Kumar et al., 2022) created a buoy-based IoT surveillance system that has the ability to relay real-time data 

through LoRaWAN, and (Scholz et al., 2022) suggested a multi-node sensor plan to improve the 

instantaneous resolution in freshwater ecosystems. Despite such developments the IoT systems continue to 

have the problems associated with sensor drift, spatial coverage, biofouling and maintenance requirements 

Machine Learning (Prediction & Analytics) 

Satellite Data (Remote Sensing Observations) 

IoT Sensors (pH, O₂, Temperature, NO₃) 
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which are emphasised in (Tace et al., 2023). These shortcomings highlight the requirements of 

supplementary monitoring strategies to offer additional spatial information. 

Satellite Remote Sensing to Monitor Aquatic Assessment 

The earth observation (EO) provided through satellites offers wide spatial coverage and capability of 

monitoring aquatic systems on a regional and global levels. Multispectral, like Sentinel-2 MSI and Landsat-8 

OLI, have been broadly applied to retrieve important measures (clorophyll-a concentration, suspended 

sediment and surface temperature, etc.), which have been shown in (Aiello et al., 2022; Shim et al., 2022). 

Synthetic aperture radar (SAR) imagery have also been found useful in the surveillance of water bodies 

during a low-light environment or when it is cloudy (Berthet et al., 2021). But, atmospheric interference, 

cloud contamination, and constraints in the revisit time usually lower the temporal consistency of 

measurements made by satellites. Research works like (Koech & Langat, 2018) point out that there is a 

necessity to combine satellite-based with ground-based measurements to enhance accuracies and strengths. 

Water Quality Prediction Based on Machine Learning 

Machine learning (ML) has become a potent instrument to extract useful information on the complicated 

datasets in the aqueous environment and predict environmental processes. In (Banerjee et al., 2022), a 

researcher used the two prediction models, and the outcomes are the water quality indices (WQIS), whereas 

in (Ray et al., 2021), two deep learning models are used, and they include LSTM networks to predict harmful 

algal blooms (HABs) and the changes in dissolved oxygen. The spatial classification of turbidity plumes and 

phytoplankton blooms by the satellite imagery has also been performed with the help of Convolutional 

Neural Networks (CNNs) (Zhao et al., 2020). Even though these studies are indicative of great 

improvements, the majority of them are based on one-source datasets and this limits the generalizability of 

the models and decreases predictive stability across various aquatic environments. It opens a possibility of a 

hybrid structure, which combines multi-source data sets, especially IoT and satellite observations, to more 

accurately monitor and predict the environment. 

Methodology 

IoT-Based Aquatic Environmental Data Gathering  

The Internet of Things (IoT) aspect of the proposed framework on monitoring is an entity that will deliver in-

situ high-resolution and sustained measurements of paramount parameters of water quality in the study area. 

An array of smart sensing nodes that were distributed was set up strategically so as to record spatial and time 

changes in the Aquatic parameters. The nodes are built of a solar-powered buoy with a microcontroller and a 

low-power wireless communication platform like LoRaWAN and 5G that allow the stable transmission of 

long-range data with minimum consumption of energy. 

Each of the buoys has a sensor package that has pH, dissolved oxygen (DO), turbidity, electrical 

conductivity (EC), water temperature, chlorophyll-a and nutrient level (nitrate and phosphate) probes. All of 

these sensors can be used to obtain extensive information on the physicochemical and biological 

characteristics of the aquatic environment. The measurements will be programmed to be taken with an 

interval of 5 to 15 minutes to ensure the system records rapid variation due to pollution action, rainfall 

induced runoff, algal activities, or variation in hydrodynamic conditions. 

The sensors collect data, which is relayed in real time by the use of gateway devices to a cloud-based 

server and with the aid of GPS coordinates, the data is automatically stamped and linked to its location to 
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provide a more accurate location of the object. Redundancy cheques and error-detection protocols are used in 

transmission to make sure that the data is fine. All observations are centralised in a database which facilitates 

secure access, mass storage and also the fusion with other environmental data. 

In order to retain the accuracy of measurement and provide long-term reliability, it was introduced to 

ensure that frequent calibration and validation was carried out. Manual sampling was done periodically and 

laboratory tests done to compare sensor readings, and manually correct sensor drift and possible fouling or 

mechanical degradation Table 1. These forms of validation make the IoT monitoring system more robust and 

make sure that high-frequency data streams may reflect the actual conditions of the environment. 

Table 1. IoT sensor types, measured parameters, units, and sampling intervals 

Sensor Type Parameter Measured Unit Sampling Interval 

pH sensor pH — 5–15 min 

DO sensor Dissolved Oxygen mg/L 5–15 min 

Turbidity sensor Turbidity NTU 5–15 min 

EC sensor Electrical Conductivity µS/cm 5–15 min 

Temperature sensor Water Temperature °C 5–15 min 

Fluorometer Chlorophyll-a µg/L 5–15 min 

Nutrient sensor Nitrate/Phosphate mg/L 5–15 min 

Satellite Remote Sensing Data Acquisition and Processing  

The satellite remote sensing was added to the monitoring system to supplement the high-frequency yet 

spatially constrained in-situ measurements that were made using IoT sensors. Multispectral and radar 

satellite data was chosen to measure broad-scale environmental conditions, observe patterns in space, and 

give historical continuity which are necessary in examining the ecosystem over time. The main sources of 

satellite data are Sentinel-2 MultiSpectral Instrument (MSI) 1020 m resolution, Landsat-89 Operational Land 

Imager (OLI) 30 m resolution, Sentinel-1 Synthetic Aperture Radar (SAR) all weather and day-night, and 

MODIS 10 properly spectral trend analysis and climatic long-term trend analysis. 

A thorough preprocessing procedure was introduced in order to make the data derived by satellite 

accurate, consistent, and usable. To remove atmospheric scattering and atmospheric absorption the following 

tools were used: ACOLITE and SEN2COR to correct the atmosphere. Radiometric and geometric errors 

were removed to standardise values on brightness and place images within reference coordinate systems. 

Any spectral distortion due to cloud cover was removed through cloud and shadow masking by applying 

Fmask algorithm, which is a necessary procedure on optical dataset. Also, the Modified Normalised 

Difference Water Index (MNDWI) was used to obtain water body extraction which enabled the system to 

isolate water bodies and remove the pixels of adjoining land areas to proceed with the analysis. 

After preprocessing, various spectral indicators were obtained, which were needed to determine 

water quality. These were chlorophyll-a concentration indices to determine the abundance of phytoplankton, 

the Normalised Difference Turbidity Index (NDTI) to determine the abundance of suspended occurrence of 

the particulate matter, and suspended sediment concentration (SSC) models based on the reflectance pattern. 

Optical and thermal spectral bands extraction were also used to extract surface water temperature and 

indicators of algal bloom. These derived parameters offer great information about biological productivity, 

sediment loads, thermal stratification and water clarity. 
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In general, processed satellite data integration acts to better characterise the dynamics of the 

ecosystem by providing an opportunity to observe overall patterns on a large scale and identify the changes 

with time, and contextualise the spatial gaps in the IoT sensor network. This multi-scale technology of 

remote sensing plays a great role in enhancing the complete overall monitoring as well as analysis of the 

system. 

Multi-Level Data Fusion Framework 

To combine high frequency, point-based measurements of the IoT sensors and the wide area coverage that 

the satellite remote sensing offers, a multi-level data fusion model was implemented. This integrative method 

complements the completeness, accuracy and interpretability of aquatic environmental monitoring since it is 

taught to overcome the intrinsic weaknesses of each data source. The fusion process is structured into three 

complementary levels namely: temporal fusion, spatial fusion and feature-level (Multi-modal) fusion. 

Temporal Fusion 

To eliminate the differences in the sampling frequency between the satellite overpasses and the IoT sensors, 

temporal fusion was done. As sensors from the IoT today take readings with the spacing of 5 -15 minutes and 

satellites reacquire the identical location every 5 to 16 days, sensor measurements have been resampled and 

accumulated to align with satellite acquisition time. The gap in the temporal dataset caused by the sensor 

seeing nothing, or getting the data scaled to 0, was dealt with through the interpolation techniques, and the 

gap-filling techniques, based on the models, however, preserving continuity. Also time-lagged features were 

built to reflect short-term variability and long-term seasonal patterns of water quality and enhance the ability 

of downstream models to identify temporal dependencies. 

Spatial Fusion 

Spatial fusion was done to match ground measurements with satellite measurements in space. Spatial 

interpolation techniques (kriging and inverse distance weighting (IDW) maps) were used to map the 

geographic coordinates of the IoT buoys on the satellite image grids. Through this process, continuous 

environmental surfaces were produced which are a spatial distribution of the parameters of water quality 

throughout the area under study. Multivariate spatial features maps were generated by a combination of point 

based field data with pixel based satellite, which allowed the examination of the finer scale spatial 

heterogeneity and macro scale environmental patterns at the same time. 

Multi-Mode-Integration (Feature Fusion) 

On the feature level, variables of sensor-derived and satellite-derived spectral indices have been normalised 

and both were fused into coherent multi-modal input vectors that can be used in machine learning models. To 

add more detail to the merged data, exogenous meteorological variables of rainfall, wind speed, humidity and 

solar radiation were included to give more context on the hydrological and climatic contribution to water 

quality dynamics Figure 2. Redundant or of low importance variables were removed using a feature selection 

procedure which used mutual information analysis and a variance threshold value after which dimensionality 

was reduced resulting in increased computational efficiency in training the model. 
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Figure 2. Multi-Level data fusion workflow integrating IOT sensor data, satellite observations, and 

feature-level processing for machine learning models 

Machine Learning Analytics and Decision Support  

The main analytical element of the proposed system was machine learning (ML), which allowed conducting 

predictive modelling, spatial classification, creation of anomalies, and real-time decision support to manage 

aquatic resources. The consolidated multi-modal dataset the product of IoT sensor measurements, satellite-

extracted measurements, and meteorological measurements was used as an overall input of training and 

evaluation of multiple models of AI crafted to address various analytical purposes. 

Predictive Modeling 

Predictive modelling was concerned on the ability to predict important parameters of water quality to assist 

in early-warning of water quality. The Long Short-Term Memory (LSTM) networks were used to capture the 

temporal relationships and forecast the dissolved oxygen (DO), pH, turbidity, and chlorophyll-a 

concentrations in a short and medium-term horizons (1-14 days). These repetitive models were based on the 

fact that IoT sensors produce a higher frequency of temporal patterns and that the satellite-based extracted 

environmental cues have been utilised. Similarly, ensemble learning available tools were used to classify 

tasks that are categorical, like the classification of pollution sources and the identification of possible 

pathways of contamination, and are highly robust and interpretable, e.g., the tools of Random Forest and 

Gradient Boosting. 

Spatial Pattern Analysis 

Convolutional Neural Networks (CNNs) were used to process the pre-processed satellite images in order to 

capture the spatial dynamics in aquatic environments. The models allowed the automatic detection of 

patterns of harmful algae bloom (HAB) distribution, plumes of turbidity and suspended sediment. Moreover, 

semantic segmentation models based on UNet produced the pixel-wise classifications, which resulted in an 

accurate mapping of hotspots of ecological degradation and spatial gradients on water quality. This IBM of 

space analysis contributed to the improvement of situational awareness because it showed the patterns that 

could not be seen in point-based sensor measurements. 

1. IoT Sensor Data Acquisition

Real-time environmental measurements

Water quality and hydrological parameters

2. Satellite Data Acquisition

Multispectral / hyperspectral imagery

Large-scale environmental observations

4. Spatial Fusion

Spatial interpolation
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Detecting An Anomaly and an Occurrence Event 

Approaches to detecting anomaly in the environment were to be applied when the shift in environmental 

conditions becomes the indicator of the pollution event, leakage of chemicals, or the eutrophication. The 

training of autoencoders to learn typical system behaviour and re-construct typical water quality conditions 

was done, and irregularities to the reconstruction pattern allowed detection of an anomaly. Isolation Forest 

algorithm has added an extra tier on unsupervised detection by isolating outlier behaviour on the fused data. 

The anomalies detected were cross-validated by threshold-based rule systems based on a historical 

environmental baseline in order to minimise false alarms. 

Decision Support System (DSS) 

The predictive model, their spatial and anomaly detection model products were put into a cloud based 

Decision Support System (DSS) to serve environmental managers and policymakers. The DSS prepared 

model results into actionable information by matching predictions with ecological limits, regulatory limit and 

risk groups. There were alarms when there was poor dissolved oxygen, high nutrient levels or HABs started. 

There were also system recommendatons with regard to operational recommendations such as aeration 

planning, controlled water discharge, and nutrient reduction plans. An easy-to-use dashboard provided real-

time information on sensor operation, indicators provided by satellites, and trend predictions that allowed 

making informed and timely decisions. 

All in all, this machine learning analytics module will convert data obtained and using complex, 

multi-source environmental data into knowledge that may be understood and acted upon, hence contributing 

to sustainable, proactive, and data-driven management of aquatic environments. 

Results and Discussion 

Improvements Of Predictive Accuracy 

The suggested IoT-satellite-ML turnkey improved the precision of the predictions in a significant way over 

the conventional monitoring and statistical methods. Using water quality forecasting models, in turn, LSTM 

networks trained on fused datasets had a Root Mean Square Error (RMSE) of 0.31 which was lower than the 

baseline of 0.42. This enhancement indicates the benefit gained by using high-frequency sensor data as well 

as satellite-based environmental indicators in order to obtain both small-scale temporal variations and coarse 

spatial patterns by the models. This lessening of prediction error corroborates the fact that the system has the 

ability of giving better predictive forecasts of the key water quality parameters including dissolved oxygen, 

turbidity, and chlorophyll-a concentrations. 

Performance of Spatial Detection and Mapping 

The grid-based analysis (CNN and UNet-based segmentation models) produced a significant increase in the 

real-time algal bloom, turbidity plumes and heavy-sediment areas detection. The Intersection over Union 

(IoU) of harmful algal bloom (HAB) detection rose to 0.89 with the suggested system compared to the 

traditional methods, which was of 0.68, and demonstrated a better capability in pixel-level detecting and 

spatial boundaries. To a large extent this has been made possible due to the incorporation of multispectral 

satellite images, SAR data and in-situ sensor data which could effectively ensure high spatial accuracy of the 

models even when clouds obscured the sky or had low visibility. The enhanced errand mapping performance 

enhances the system to predict early ecological grievances. 



Natural and Engineering Sciences         941 
 

Event Detection Efficiency 

The time taken to detect incidences of pollution and instant water quality changes were drastically decreased 

by the proposed framework. When the use of conventional methods of monitoring would normally take 

4872hours to detect the events of pollution, owing to the delay in sampling and laboratory tests, the 

integrated system took less than 28 hours to identify the pollution event. This is based on the dynamics of 

transmitting real-time data by IoT sensors, identifying anomalies through automatic encoders and Isolation 

Forest models, and validating them with satellite data. The quicker the response the environmental managers 

will be able to react to such an event more proactively reducing issues to ecological harm and avoid the 

continuing growth of contamination events. 

Systemwide Proportionality and Implications of Practise in A Nutshell 

The results of the combined analysis prove that sensor-satellite data fusion and machine learning analytics 

contribute significantly to the strength, quality, and responsiveness of aquatic resource management systems 

Table 2. The decrease in the prediction error of 25-30 percent, the better quantity of the ML than the classical 

statistical models, and the successful application of SAR data in the cloudy season are all indicative of the 

value of the operationality of the system. Also, this has the ability to forecast early-warning to enhance 

prompt mitigation measures including aeration, flow management, and nutrient management, which would 

build resilience of the ecosystems in a very impressive manner Figure 3. These results support the hypothesis 

that the holistic smarter boards of engineering offer a scaling and feasible approach towards sustainable and 

climate-adaptive management in the management of aquatic resources. 

 

Figure 3. Comparison of baseline and proposed system performance across key monitoring metrics 
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Table 2. Performance comparison between baseline and proposed system 

Metric Baseline (Traditional) 
Proposed IoT–Satellite–ML 

System 

Water Quality Prediction 

(RMSE) 
0.42 0.31 

HAB Detection Accuracy (IoU) 0.68 0.89 

Pollution Event Detection Time 48–72 hours < 28 hours 

Prediction Error Reduction — 25–30% improvement 

Model Performance 
Statistical (ARIMA, 

Regression) 
ML models (LSTM, CNN, UNet) 

Weather Resilience Limited under cloud cover Enhanced via SAR integration 

Mitigation Response Speed Slow, delayed interventions Fast, early-warning enabled 
 

Conclusion 

This paper has shown that the combination of in-situ sensing using IoT with satellite remote sensing and 

machine learning analytics provides a powerful, scalable, and smart system of managing aquatic resources in 

a sustainable manner. The proposed system can contribute to the significant increase of the accuracy of water 

quality forecasting, the effectiveness of identifying harmful algal species and cases of pollution, as well as 

the enhanced situational awareness thanks to obtained high-frequency field measurements and widespread 

spatial monitoring and high-quality predictive modelling. The findings verify that multi-source data fusion 

and machine learning are not only effective in overcoming the constraints of traditional monitoring methods 

but also allows timely and proactive ecological measures to stimulate sustainable ecosystems in the long 

course. The progress ahead ought to be an integration of edge AI on real-time processing on-sensor, 

autonomous drones that operate in aquatic environments, and scenario-based decision-making with the aid of 

the digital twin models. 
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