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Abstract

The adequate management of the aquatic system which includes rivers, lakes, reservoirs, wetlands, and
coastal areas will need the continuous and high-resolution monitoring of the environment that will be able
to handle the fast hydrological and ecological shifts. Conventional field methods of sampling offer poor
spatial and temporal resolution, and they frequently do not reveal early pollution incidences, predict
ecological hazards, or assist data-driven resources optimization. This paper will introduce an
interdisciplinary smart environmental engineering paradigm that will combine Internet of Things (loT)
sensor networks, multispectral and synthetic aperture radar (SAR) satellite remote sensing, and machine
learning (ML) analytics to allow real-time, predictive, and adaptive management of aquatic resources. In
the given methodology, a hierarchical data fusion architecture is used to bring the high-frequency
measurements of the in-situ sensors in harmony with the big data measurements of the satellites to
improve the spatial-temporal resolution and interpretability of the environment. Various ML
architectures, such as the Random Forest (classification), LSTM (time-series prediction), CNN-based
spatial models (detecting the harmful algae bloom), and physics-informed neural networks (PINNS)
(making predictions based on hydrodynamics) were tested to determine their efficiency involved in the
forecasting of water quality parameters, assessing the pollution sources, and defining the habitat health. A
pilot application of the integrated system in an actual freshwater lake showed that the integrated system is
more effective at the prediction accuracy level (27 percent improvement), spatial mapping reliability, and
a shorter (41 percent less) time to detect contaminants than traditional monitoring approaches. The results
indicate the potential of integrating loT with satellites and machine learning to enable a flexible, robust,
and smart system of monitoring that can ultimately contribute to the active management of the
environment, reinforce the methods of climate change adaptation, and help to achieve the sustainable
preservation of water resources.
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Introduction

Rivers, lakes, reservoirs, estuaries, and coastal areas are aquatic ecosystems that are significant in sustaining
the human societies and ecosystem balance. They supply important services like the supply of drinking
water, fisheries production, hydropower generation, nutrient cycling, biodiversity conservation as well as
climate regulation. Nevertheless, the ecosystems are beginning to be overwhelmed due to human level and
anthropogenic activities and environmental factors. Rapid urbanisation, industrial effluents, agriculture
runoffs which have been increased with nutrient and pesticides and effects of climate change, including
changed rainfall patterns and increased temperature, have escalated the degradation and increased the
chances of the ecological system being unstable. These are causes of worries that require more effective,
more precise and more proactive environmental monitoring systems.

The conventional methods of aquatic investigation mainly depend on hand field-based sampling and
laboratory testing. Even though these techniques are scientifically valid in providing quantifiable
measurements, they are restricted to small areas, scarce sampling rates, and sluggish reports. Therefore, they
tend to miss the extreme dynamism of aquatic processes, such as infusion of pollutants fast, short-term bouts
of eutrophication, harmful algal blooms (HABs), and sediment agitation, and transient alteration of thermal
stratification. The failure to offer real-time and sustained information by more traditional means limits the
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ability of environmental managers to introduce interventions in time and prevent the development of possible
risks to the ecological environment.

The recent developments in smart sensing technologies, satellite remote sensing, as well as data-
driven analytics have established new chances to revolutionise the process of monitoring aquatic resources.
Real-time fueled water quality sensors (Internet of Things sensor, 10T sensor) allow to gain high-frequency
water quality measurements such as pH, dissolved oxygen, turbidity, temperature, chlorophyll-a, nutrient
concentrations with minimum human participation. Majority of the earth observation satellites like Sentinel-1
SAR, Sentinel-2 MSI, Landsat-8/9 OLI, and MODIS offer large spatial coverage, multi-spectral data, and
long-term environmental patterns. In the meantime, machine learning (ML) methods, including those based
on classical models, deep learning and physics-informed neural networks (PINNSs) present compelling
predictive modelling, anomaly detection, pattern classification and decision support as well.

In light of complementary advantages of these technologies, the proposed paper presents a combined
smart environmental engineering solution involving an loT-based in-situ sensing system, satellites remote
sensing as well as machine learning analytics used to advance the precision, reactivity, and sustainability of
aquatic resource management Figure 1. This study will help in offering a scalable, real-time, and adaptable
data collection solution by designing a hybrid data fusion framework and testing various ML algorithms to
forecast water quality, identify the source of pollution, and assess ecological risks. The results of this effort
will assist in evolution of sustainable environmental administration practises and enhance strength to novel

aquatic ecosystem dilemmas.
& C 10T Sensors (pH, Oz, Temperature, NOD ﬁ

‘ )) Satellite Data (Remote Sensing Observations) D ))

|:||]/|] Machine Learning (Prediction & Analytics) @

Figure 1. Integrated framework illustrating the role of iot sensors, satellite remote sensing, and machine
learning in smart environmental engineering for sustainable aquatic resource management

Related Work

Internet of Things-Type Environmental Aquatic Monitoring

Internet of Things (loT) technologies have greatly enhanced real-time monitoring of water quality by
facilitating in the continuous measurement of the parameters including pH, dissolved oxygen (DO), turbidity,
temperature, and nutrient concentration levels. The low-power sensor networks and wireless communication
protocols applied in aquatic environments have been proven to be effective in several studies. Indicatively,
(Kumar et al., 2022) created a buoy-based 10T surveillance system that has the ability to relay real-time data
through LoRaWAN, and (Scholz et al.,, 2022) suggested a multi-node sensor plan to improve the
instantaneous resolution in freshwater ecosystems. Despite such developments the loT systems continue to
have the problems associated with sensor drift, spatial coverage, biofouling and maintenance requirements
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which are emphasised in (Tace et al., 2023). These shortcomings highlight the requirements of
supplementary monitoring strategies to offer additional spatial information.

Satellite Remote Sensing to Monitor Aquatic Assessment

The earth observation (EO) provided through satellites offers wide spatial coverage and capability of
monitoring aquatic systems on a regional and global levels. Multispectral, like Sentinel-2 MSI and Landsat-8
OLI, have been broadly applied to retrieve important measures (clorophyll-a concentration, suspended
sediment and surface temperature, etc.), which have been shown in (Aiello et al., 2022; Shim et al., 2022).
Synthetic aperture radar (SAR) imagery have also been found useful in the surveillance of water bodies
during a low-light environment or when it is cloudy (Berthet et al., 2021). But, atmospheric interference,
cloud contamination, and constraints in the revisit time usually lower the temporal consistency of
measurements made by satellites. Research works like (Koech & Langat, 2018) point out that there is a
necessity to combine satellite-based with ground-based measurements to enhance accuracies and strengths.

Water Quality Prediction Based on Machine Learning

Machine learning (ML) has become a potent instrument to extract useful information on the complicated
datasets in the aqueous environment and predict environmental processes. In (Banerjee et al., 2022), a
researcher used the two prediction models, and the outcomes are the water quality indices (WQIS), whereas
in (Ray et al., 2021), two deep learning models are used, and they include LSTM networks to predict harmful
algal blooms (HABs) and the changes in dissolved oxygen. The spatial classification of turbidity plumes and
phytoplankton blooms by the satellite imagery has also been performed with the help of Convolutional
Neural Networks (CNNs) (Zhao et al., 2020). Even though these studies are indicative of great
improvements, the majority of them are based on one-source datasets and this limits the generalizability of
the models and decreases predictive stability across various aquatic environments. It opens a possibility of a
hybrid structure, which combines multi-source data sets, especially 10T and satellite observations, to more
accurately monitor and predict the environment.

Methodology
loT-Based Aquatic Environmental Data Gathering

The Internet of Things (10T) aspect of the proposed framework on monitoring is an entity that will deliver in-
situ high-resolution and sustained measurements of paramount parameters of water quality in the study area.
An array of smart sensing nodes that were distributed was set up strategically so as to record spatial and time
changes in the Aquatic parameters. The nodes are built of a solar-powered buoy with a microcontroller and a
low-power wireless communication platform like LoORaWAN and 5G that allow the stable transmission of
long-range data with minimum consumption of energy.

Each of the buoys has a sensor package that has pH, dissolved oxygen (DO), turbidity, electrical
conductivity (EC), water temperature, chlorophyll-a and nutrient level (nitrate and phosphate) probes. All of
these sensors can be used to obtain extensive information on the physicochemical and biological
characteristics of the aquatic environment. The measurements will be programmed to be taken with an
interval of 5 to 15 minutes to ensure the system records rapid variation due to pollution action, rainfall
induced runoff, algal activities, or variation in hydrodynamic conditions.

The sensors collect data, which is relayed in real time by the use of gateway devices to a cloud-based
server and with the aid of GPS coordinates, the data is automatically stamped and linked to its location to
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provide a more accurate location of the object. Redundancy cheques and error-detection protocols are used in
transmission to make sure that the data is fine. All observations are centralised in a database which facilitates
secure access, mass storage and also the fusion with other environmental data.

In order to retain the accuracy of measurement and provide long-term reliability, it was introduced to
ensure that frequent calibration and validation was carried out. Manual sampling was done periodically and
laboratory tests done to compare sensor readings, and manually correct sensor drift and possible fouling or
mechanical degradation Table 1. These forms of validation make the 10T monitoring system more robust and
make sure that high-frequency data streams may reflect the actual conditions of the environment.

Table 1. 10T sensor types, measured parameters, units, and sampling intervals

Sensor Type Parameter Measured | Unit | Sampling Interval
pH sensor pH — 5-15 min
DO sensor Dissolved Oxygen mg/L 5-15 min
Turbidity sensor Turbidity NTU 5-15 min
EC sensor Electrical Conductivity | uS/cm 5-15 min
Temperature sensor | Water Temperature °C 5-15 min
Fluorometer Chlorophyll-a po/L 5-15 min
Nutrient sensor Nitrate/Phosphate mg/L 5-15 min

Satellite Remote Sensing Data Acquisition and Processing

The satellite remote sensing was added to the monitoring system to supplement the high-frequency yet
spatially constrained in-situ measurements that were made using loT sensors. Multispectral and radar
satellite data was chosen to measure broad-scale environmental conditions, observe patterns in space, and
give historical continuity which are necessary in examining the ecosystem over time. The main sources of
satellite data are Sentinel-2 MultiSpectral Instrument (MSI) 1020 m resolution, Landsat-89 Operational Land
Imager (OLI) 30 m resolution, Sentinel-1 Synthetic Aperture Radar (SAR) all weather and day-night, and
MODIS 10 properly spectral trend analysis and climatic long-term trend analysis.

A thorough preprocessing procedure was introduced in order to make the data derived by satellite
accurate, consistent, and usable. To remove atmospheric scattering and atmospheric absorption the following
tools were used: ACOLITE and SEN2COR to correct the atmosphere. Radiometric and geometric errors
were removed to standardise values on brightness and place images within reference coordinate systems.
Any spectral distortion due to cloud cover was removed through cloud and shadow masking by applying
Fmask algorithm, which is a necessary procedure on optical dataset. Also, the Modified Normalised
Difference Water Index (MNDWI) was used to obtain water body extraction which enabled the system to
isolate water bodies and remove the pixels of adjoining land areas to proceed with the analysis.

After preprocessing, various spectral indicators were obtained, which were needed to determine
water quality. These were chlorophyll-a concentration indices to determine the abundance of phytoplankton,
the Normalised Difference Turbidity Index (NDTI) to determine the abundance of suspended occurrence of
the particulate matter, and suspended sediment concentration (SSC) models based on the reflectance pattern.
Optical and thermal spectral bands extraction were also used to extract surface water temperature and
indicators of algal bloom. These derived parameters offer great information about biological productivity,
sediment loads, thermal stratification and water clarity.
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In general, processed satellite data integration acts to better characterise the dynamics of the
ecosystem by providing an opportunity to observe overall patterns on a large scale and identify the changes
with time, and contextualise the spatial gaps in the 10T sensor network. This multi-scale technology of
remote sensing plays a great role in enhancing the complete overall monitoring as well as analysis of the
system.

Multi-Level Data Fusion Framework

To combine high frequency, point-based measurements of the 10T sensors and the wide area coverage that
the satellite remote sensing offers, a multi-level data fusion model was implemented. This integrative method
complements the completeness, accuracy and interpretability of aquatic environmental monitoring since it is
taught to overcome the intrinsic weaknesses of each data source. The fusion process is structured into three
complementary levels namely: temporal fusion, spatial fusion and feature-level (Multi-modal) fusion.

Temporal Fusion

To eliminate the differences in the sampling frequency between the satellite overpasses and the 10T sensors,
temporal fusion was done. As sensors from the 10T today take readings with the spacing of 5 -15 minutes and
satellites reacquire the identical location every 5 to 16 days, sensor measurements have been resampled and
accumulated to align with satellite acquisition time. The gap in the temporal dataset caused by the sensor
seeing nothing, or getting the data scaled to 0, was dealt with through the interpolation techniques, and the
gap-filling techniques, based on the models, however, preserving continuity. Also time-lagged features were
built to reflect short-term variability and long-term seasonal patterns of water quality and enhance the ability
of downstream models to identify temporal dependencies.

Spatial Fusion

Spatial fusion was done to match ground measurements with satellite measurements in space. Spatial
interpolation techniques (kriging and inverse distance weighting (IDW) maps) were used to map the
geographic coordinates of the 10T buoys on the satellite image grids. Through this process, continuous
environmental surfaces were produced which are a spatial distribution of the parameters of water quality
throughout the area under study. Multivariate spatial features maps were generated by a combination of point
based field data with pixel based satellite, which allowed the examination of the finer scale spatial
heterogeneity and macro scale environmental patterns at the same time.

Multi-Mode-Integration (Feature Fusion)

On the feature level, variables of sensor-derived and satellite-derived spectral indices have been normalised
and both were fused into coherent multi-modal input vectors that can be used in machine learning models. To
add more detail to the merged data, exogenous meteorological variables of rainfall, wind speed, humidity and
solar radiation were included to give more context on the hydrological and climatic contribution to water
quality dynamics Figure 2. Redundant or of low importance variables were removed using a feature selection
procedure which used mutual information analysis and a variance threshold value after which dimensionality
was reduced resulting in increased computational efficiency in training the model.
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Figure 2. Multi-Level data fusion workflow integrating 10T sensor data, satellite observations, and
feature-level processing for machine learning models

Machine Learning Analytics and Decision Support

The main analytical element of the proposed system was machine learning (ML), which allowed conducting
predictive modelling, spatial classification, creation of anomalies, and real-time decision support to manage
aquatic resources. The consolidated multi-modal dataset the product of 10T sensor measurements, satellite-
extracted measurements, and meteorological measurements was used as an overall input of training and
evaluation of multiple models of Al crafted to address various analytical purposes.

Predictive Modeling

Predictive modelling was concerned on the ability to predict important parameters of water quality to assist
in early-warning of water quality. The Long Short-Term Memory (LSTM) networks were used to capture the
temporal relationships and forecast the dissolved oxygen (DO), pH, turbidity, and chlorophyll-a
concentrations in a short and medium-term horizons (1-14 days). These repetitive models were based on the
fact that 10T sensors produce a higher frequency of temporal patterns and that the satellite-based extracted
environmental cues have been utilised. Similarly, ensemble learning available tools were used to classify
tasks that are categorical, like the classification of pollution sources and the identification of possible
pathways of contamination, and are highly robust and interpretable, e.g., the tools of Random Forest and
Gradient Boosting.

Spatial Pattern Analysis

Convolutional Neural Networks (CNNs) were used to process the pre-processed satellite images in order to
capture the spatial dynamics in aquatic environments. The models allowed the automatic detection of
patterns of harmful algae bloom (HAB) distribution, plumes of turbidity and suspended sediment. Moreover,
semantic segmentation models based on UNet produced the pixel-wise classifications, which resulted in an
accurate mapping of hotspots of ecological degradation and spatial gradients on water quality. This IBM of
space analysis contributed to the improvement of situational awareness because it showed the patterns that
could not be seen in point-based sensor measurements.
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Detecting An Anomaly and an Occurrence Event

Approaches to detecting anomaly in the environment were to be applied when the shift in environmental
conditions becomes the indicator of the pollution event, leakage of chemicals, or the eutrophication. The
training of autoencoders to learn typical system behaviour and re-construct typical water quality conditions
was done, and irregularities to the reconstruction pattern allowed detection of an anomaly. Isolation Forest
algorithm has added an extra tier on unsupervised detection by isolating outlier behaviour on the fused data.
The anomalies detected were cross-validated by threshold-based rule systems based on a historical
environmental baseline in order to minimise false alarms.

Decision Support System (DSS)

The predictive model, their spatial and anomaly detection model products were put into a cloud based
Decision Support System (DSS) to serve environmental managers and policymakers. The DSS prepared
model results into actionable information by matching predictions with ecological limits, regulatory limit and
risk groups. There were alarms when there was poor dissolved oxygen, high nutrient levels or HABs started.
There were also system recommendatons with regard to operational recommendations such as aeration
planning, controlled water discharge, and nutrient reduction plans. An easy-to-use dashboard provided real-
time information on sensor operation, indicators provided by satellites, and trend predictions that allowed
making informed and timely decisions.

All in all, this machine learning analytics module will convert data obtained and using complex,
multi-source environmental data into knowledge that may be understood and acted upon, hence contributing
to sustainable, proactive, and data-driven management of aquatic environments.

Results and Discussion
Improvements Of Predictive Accuracy

The suggested loT-satellite-ML turnkey improved the precision of the predictions in a significant way over
the conventional monitoring and statistical methods. Using water quality forecasting models, in turn, LSTM
networks trained on fused datasets had a Root Mean Square Error (RMSE) of 0.31 which was lower than the
baseline of 0.42. This enhancement indicates the benefit gained by using high-frequency sensor data as well
as satellite-based environmental indicators in order to obtain both small-scale temporal variations and coarse
spatial patterns by the models. This lessening of prediction error corroborates the fact that the system has the
ability of giving better predictive forecasts of the key water quality parameters including dissolved oxygen,
turbidity, and chlorophyll-a concentrations.

Performance of Spatial Detection and Mapping

The grid-based analysis (CNN and UNet-based segmentation models) produced a significant increase in the
real-time algal bloom, turbidity plumes and heavy-sediment areas detection. The Intersection over Union
(loV) of harmful algal bloom (HAB) detection rose to 0.89 with the suggested system compared to the
traditional methods, which was of 0.68, and demonstrated a better capability in pixel-level detecting and
spatial boundaries. To a large extent this has been made possible due to the incorporation of multispectral
satellite images, SAR data and in-situ sensor data which could effectively ensure high spatial accuracy of the
models even when clouds obscured the sky or had low visibility. The enhanced errand mapping performance
enhances the system to predict early ecological grievances.
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Event Detection Efficiency

The time taken to detect incidences of pollution and instant water quality changes were drastically decreased
by the proposed framework. When the use of conventional methods of monitoring would normally take
4872hours to detect the events of pollution, owing to the delay in sampling and laboratory tests, the
integrated system took less than 28 hours to identify the pollution event. This is based on the dynamics of
transmitting real-time data by 10T sensors, identifying anomalies through automatic encoders and Isolation
Forest models, and validating them with satellite data. The quicker the response the environmental managers
will be able to react to such an event more proactively reducing issues to ecological harm and avoid the
continuing growth of contamination events.

Systemwide Proportionality and Implications of Practise in A Nutshell

The results of the combined analysis prove that sensor-satellite data fusion and machine learning analytics
contribute significantly to the strength, quality, and responsiveness of aquatic resource management systems
Table 2. The decrease in the prediction error of 25-30 percent, the better quantity of the ML than the classical
statistical models, and the successful application of SAR data in the cloudy season are all indicative of the
value of the operationality of the system. Also, this has the ability to forecast early-warning to enhance
prompt mitigation measures including aeration, flow management, and nutrient management, which would
build resilience of the ecosystems in a very impressive manner Figure 3. These results support the hypothesis
that the holistic smarter boards of engineering offer a scaling and feasible approach towards sustainable and
climate-adaptive management in the management of aquatic resources.
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Figure 3. Comparison of baseline and proposed system performance across key monitoring metrics
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Table 2. Performance comparison between baseline and proposed system

Proposed loT-Satellite-ML

Metric Baseline (Traditional)
System
Water Quality Prediction
(RMSE) 0.42 0.31
HAB Detection Accuracy (loU) 0.68 0.89
Pollution Event Detection Time 48-72 hours < 28 hours

Prediction Error Reduction

25-30% improvement

Model Performance

Statistical (ARIMA,
Regression)

ML models (LSTM, CNN, UNet)

Weather Resilience

Limited under cloud cover

Enhanced via SAR integration

Mitigation Response Speed

Slow, delayed interventions

Fast, early-warning enabled

Conclusion

This paper has shown that the combination of in-situ sensing using 10T with satellite remote sensing and
machine learning analytics provides a powerful, scalable, and smart system of managing aquatic resources in
a sustainable manner. The proposed system can contribute to the significant increase of the accuracy of water
quality forecasting, the effectiveness of identifying harmful algal species and cases of pollution, as well as
the enhanced situational awareness thanks to obtained high-frequency field measurements and widespread
spatial monitoring and high-quality predictive modelling. The findings verify that multi-source data fusion
and machine learning are not only effective in overcoming the constraints of traditional monitoring methods
but also allows timely and proactive ecological measures to stimulate sustainable ecosystems in the long
course. The progress ahead ought to be an integration of edge Al on real-time processing on-sensor,
autonomous drones that operate in aquatic environments, and scenario-based decision-making with the aid of

the digital twin models.
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